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Abstract

We present a new method for ap)proximating the i-;rtition function of 2D Ising models using

a transfer matrix of order 2'. For n = 30 our current program took about 20 seconds on1

a Sparc station to obtain 4 correct (lecimals in the top two eigenvalues and 5 nliliules for

5 correct decimals. Eigenvectors were computed at the same time. The temperature was

within 3X4 of critical.

The main idea is to force certain entries in vectors to have the same values and to find

the crudest rel)resentation of this type that delivers the required accuracy. At no time does

our program work with vectors with 2' entries.
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1 Introduction

The Ising model was proposed to explain properties of ferrolnagnets but since then it has

found application to topics in Chemistry and Biology as well as in Physics. For any reader

unfamiliar with the model we say a few words and supply some references in Section 9. The

remainder of this section assumes some knowledge of the so called transfer matrix. This

paper presents a numerical method for computing properties of the 2D Ising model for given

parameter values such as magnetic field strength B. temperature T and coupling constantls

J.

There are two avenues leading to such calculations: combinatorial and algebraic. Our

method is in the second category which makes use of a transfer matrix M, associated with

a semi-infinite helical grid of -spins" or -'sites- with n of them on each circular band. One

form of II,, for n = 3 and n = 4. with the field strength B normalized with respect to the

coupling constant J is as follows:
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where (%with appropriate normalizations)

11 = ( (2-B)/T b = (-BIT and c = ((-2-B)/T.

The attractive property of Al1, is that it is a nonnegative irreducible matrix whose

dominant eigenvalue (called the Perron root) is the wanted partition function per spin.

Thus it is only necessary to approximate this eigenvalue to the desired accuracy although

the associated eigenvectors are also useful in approximnating quantities of physical inlerest.

Moreover M,, is exceedingly sparse: it has exactly 2 non-zero entrie.; per row (and columnt)

arranged in a regular pattern. There is only one difficulty": M,, is of order 2" and we are

interested in the case i - x. We know of no calculations with n > 20 up till now.

Our approach uses two finite families {S,,.i}l: and {7,.,-• of orthogonal indic.il vec-

tors. and approximates the :op two column and row eigenvectors of Il,, from the subspaces

spanned by them.

Step 0. Initialize I to 1.

Step 1. Represent in comlpact form. tlie orthogonal projection P of the transfer matrix 11,,

onto the subspace slan(S,,.). In addition represent the projection Q of the adjoin1

matrix A1,, onto the subspace span( T,,. ).

Step 2. Compute the two largest eigenvalues and the associated row and columln eigenvec-

tors of P and Q. These are. in a sense. the best approximations from the given pair of

indicial subspaces span(,.,I) and spans'Tz.1 ). However they may not be good enong-h.

Step 3. Evaluate residual normns. condition numbers and associated error bounds and es-

timates. If the estimates are satisfactory then compute the required properties of t.h

model and stop. Otherwise return to Step I with the next member of each fanmilv. i.e.

increase I by 1.

Our goal is to creep up to the coarsest of our vector representations that permits ap-

proximations of t'he desired accuracy. This minimal representation, which is not known in

advance. gave us the name for our approach.

Note that the difficult'y lies not in M,, itself but in the the representation of vectors

in R 2 ". Indeed the special structure of .l,, would permit evaluation of 31,, for any 2"-

dimensional vector v with great efficiency. However a procedure that costs 0(2") may vbe

too much when n is large and our central problem is the representation of vectors in R 2 '.

Sparse vectors occur in sparse matrix work and N. Fuchs [Fuc,9]. when applying the
Power Method to M,,. keeps only the largest 1000 entries of each vector. This (levice is

satisfactory deep within the ferromagnetic region of the model. However after studving

the Perron vector in cases near the critical temperature we found that it contained almost

no small entries. In different language. every configuration in the "-spin" array contributes

imgnificantly to the partition function.
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As a sul)stitute for sparsity we propose to limit tile number of distinct values that cail

occur among a vector's components. We do this by ineans of a family of "'indicial fuictiol.s".

Full details are given in Section :3 but here we sketch the idea.

A vector in R 2 ' may be thought of as a function on {f1.2.....2"}. What we call an

indicial function is really a partition of this index set into dI;sjoint subsets omi each of which

the vector is constant. Thus the vector takes on fewer than 2" distinct values, perhaps only

a few million of them. This sort of vector recalls H. Lebesgue's ap)proach to integration

via step functions. For a given partition f the set of all representable vectors forms a

subl)sace Sf of R2 ". We bow to the influence of computer science and start counting at

0. If {O. .... 2"- } denotes the standard basis and if { 15. 93. 214. 861} is one subset in tile
partition f then 1-5 + (93 + (214 + (886 is one member of a natural orthogonal basis for Sf.

In other words. tihe natural basis vectors of R2" are aggreated according to f to prod(ce

an orthogonal basis of Sf. An important feature of our approach is that these basis veclors

are never represented explicitly in the computer. Careful index manipulation t akes their

place. Moreover our choice of f yields a manageable representation of the projection 1) of

MI1 onto Sf. P1 is nonnegative and irreducible. Pf is njot as sparse as 31, but we hold it

in a compact form that permits the efficient formation of P ir for al)propriate wr.

There is some freedom in the choice of the family of f's. Our f's are a compromise

between physics and the very special structure of .11,. Full details are given in Sections 3.

4. and 5.

The next task is to find the Perron vectors of P1 . Recall that the top two eigenvaltes

of MI,, coalesce as the temperature becomes critical. We have used two al)l)roaches:

(a) a block power method with a block size of 2.

()) a nonsymmetric Lanczos code.

The details are given in Section 6. It turns out that it pays to compute the two largest

eigenvalues together with their column and row eigenvectors. The reason that conventional

techniques such as these are appropriate is that with our current indicial functions f (and

f'). dim Sf = O( ,122-' ) and so P1 is of modest order. In addition we form and compute

similar quantities for Ql,. the (orthogonal) projection of _,, onto an associated subspace

S1,. The extra information from Qf, allows us to compute an approximate Perron row

vettor y' to match the Perron column vector .r for P1 . P1 and Qy, share the same Perron

root. Fortunately Qf, is diagonally similar to P1 and need not be represented explicitly.

We would prefer to use the oblique projection of .11, onto the pair of subspaces (S1 . Sf')

but we have not yet found a convenient (sparse) representation because some of the canonical

angles between $y and $f, eqilai r/2 and this fact coml)licates the representation.

Associated with the vectors r (Pj.r = .r-,) and y- (y'Qf, = y-) are vectors :f - $f

and ,": ý- Sf, that approximate the eigenvectors we seek. It is essential bo he able to bound
o- estimate the accuracy of our approximate eigentriple ( ,7. -:. U').
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Fortunately bY using our special lases in Sf and Sf, appropriately we can comimn u

(exactly. in exact arit hmetic) tile associated residual vectors

rf : :l,f - zf 7f. ..sf, := .1I,1T, - U'flWf,

and

-,f:=f":/(11I"'111211z- 112).

Although r1 E Rp". "sf, E R-" we can accumulate 1,.fj12 anl 11- 2 and 117 during tile

computation of :f and ir', and thus avoid ever having to store them. This is a key feature

of the efficiency of our method. From II,11. I-Isl. and .:f we can compute error b)ounds and

error estimates. This is discussed in Section 7.

It is likely that our error estimates indicate that :f. 1'f, and 7; are not sufficiently accu-

rate. In that case we pick the next indicial function f in our fanily so that f is a refinement

of f and Sf C Sf. dim S1 • 2 di(n Sf. Then we repeat the cycle of al)l)roximations until

the accuracy requirement is mnet or ouir resources are exhausted. This is not a.n iteratw 1

llethod because, in a finite nunmber of steps. tile indicial function becomies lie identitY.

BY creel)ing up to adequate approximations from below we ensure that we end ul) wvithI

the coarsest indicia.l function that meets the given tolerance. In this way do we achieve the

niininal representation. from our family, that gives our method its name.

It is worth repeating that at no time in the cycle do we need to store a vector with 2"

collmponlents.

Quantities of interest are usually partial derivatives of the partition function. If we usk

differeinces to estimate derivatives that would sharply increase the required accuracy of our

approximations. Fortunately S. Gartenhaus [Gar:3] and N. Fuchs [Fucs9] have shown that

sotmue of the quantities of interest may be expressed in termns of : and w- anid so there is no

need to use differences. This increases the scope of our apl)roach significantly.
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2 Basic Notation and Terminology

We will follow Householder's conventions: upper case Roman letters for matrices, lower case
letters for column vectors, and lower case Greek letters for scalars. However. the letters
i. j. k. 1. m. n and t will be reserved for integers. All matrices and vectors will be real.
The transpose of A will be denoted by A'. and the inner product of vectors x and y by
(x, y) = x'y. We will exclusively use the Euclidean norm for vectors: 11xjI = v "X?'.

As the theory behind our indicial subspaces is intimately connected with the binary rep-
resentations of numbers, we will index the rows and columns of a matrix, and the elements
of a vector, starting from 0. unless otherwise specified. Thus for A E R"x2 and x E R"'.
(A)i,j denotes the entry in row i and column j of A. 0 < I - 1, 0 < j < m - 1. and x(i)
denotes the ith element of x. 0 < i < m - 1.

The 1 x m zero and identity matrices will be written as 01, and Ilxm respectively: tie
2' x 2' identity matrix will be written as 1,,. For Q E Rx. we let span(Q) denote the
subspace of R1 spanned by the m columns of Q. Similarly. if S is a set of vectors in R1. the
subspace spanned by these vectors will be denoted by span(S).

The symbol := will denote a definition, and the symbol 0 will mark the end of a proof.
By a (binary) string ,;. we shall mean a finite sequence of Os and is. The empty string

is denoted by Z. We write {0. 1i for the set of all strings (including E). and {0. 1}" for tle
set of n-bit strings. n > 1. The length of a string ; is denoted by wi. the concatenation of
two strings •7 and ,-2 by ,71 0oW 2 . and the reversal of a string w (i.e. ,w written backwards)
by ,.R

eg. {o. 1}3 = {ooo. ooi.oo10.i. 100. 101. 11o. 111}.

10011011 = 6, 0100 110= 010110. 001101R = 101100.

We also define IlI := 0.R :=.and E o,.w = u o 6 := ,; for any string ".
For a nonemptv string ,. we denote its ith bit from the left by w(i). i = 1.2 ..... I,,'

Thusw = ,(1)ow (2)o...ow(Iwl).and .R=(I, ;I)o l(,I_ 1)o.--o(1). For given 1.
1 < I < F;J. the 1-bit prefix of w is the substring ,,(1) o,,,(2)o... o,(), and the /-bit suffix
of c is the substring ,I -+ 1) o ,w(,;j - I + 2) o ... o4(',l. The empty string I will be
considered to be the 0-bit prefix and the 0-bit suffix of any string ,;. We shall also refer to
,( 1). ,;(1) o,,(2) and ,,(,) as the leading bit, leading bit pair and trailing bit respectively
of a string w; with I1'; >- 2.

There is a natural correspondence between binary strings and the nonnegative integers
N arising from the conccpt of the binary representation of numbers. We formalize this by
defining two functions:

v {0.i" -1 N mapping ; 4 f0. 1i to the integer value it represents (rC) := 0).

and for n > 1.

a : {0.1 ..... 2" - 1} - {0. 1}" mapping i E N to its n-bit binary representation.



We note that there is no uniqueness in these maps: two different strings may have the same

value under v. eg. v(011) = v(11) = 3. and a nonnegative integer is mapped to different

strings under different art's. eg. 02(3) = 11. a3(3) = 011. This. however, should cause no

confusion. We can extend v to sets of strings: v(E) = {v(-) : ." E E}. E C j0. 1}7'. > 1.

Two other properties of binary strings that are of interest to us are their 1-bit counts

and bit transition counts.

eg. 000000 has no is. 111111 has sLx is, and 101101 has four is.

000000 and 111111 have no bit transitions. 001111 has one bit transition.

101101 has 4 bit transitions, and 010101 has 5 bit transitions.

We note that for , E {0. 11'. :' has at most n is and at most n - 1 bit transitions.



3 The subspace span(S,.i) and its uses

span(S,.) consists of all vectors in R 2" constrained to carry the same value in various places

(or positions). Each position is given by a bit string of length n: the zeroth (top) position

is represented by 00...0 and the (2n - 1)th. or last, position is given by 11... 1.

1. A typical set of those positions (i.e. strings of length n) that carry the same value is

characterized by a triple (.a. k. t) and is called an indicial set and is denoted by Il,.k.t:

• is the common /-bit suffix of the positions (i.e. w is the substring

consisting of the last I bits).

k is the common 1-bit count of the positions, and

t is the common bit transition count of the positions.

Here k and t reflect the physics but it is ,, that exploits the form of MV,.

2. To each distinct 1,.k.t corresponds the vector X,.k.t obtained by summing those columns

of the 2n x 2" identity matrix whose indices belong to the set Iw.k.t. In addition 8,.1 =

{Ix.k.t : 1,; = l}. The columns of the 2' X ISn.1I matrix X 1 are the X,.k.t appropriately

ordered. By our choice X, has orthogonal. but not orthonormal. columns:

XTX 1 = Dx which is diagonal.

Note that S,,. and the columns of X1 are the same sets. the latter are ordered. IS,11i =

0(n 221-1) for large n.

3. The vectors X,.kt are never represented explicitly. Our choice exploits the duodiagonal

structure of the transfer matrix Mn so that

M S,•.l) (,S,.1+).

One useful consequence is that the orthogonal projection of MA onto span(S,.j). writ-

ten

PC -- D-'XMXI

has at most 4 non-zero entries per column. More precisely. PC, is the representation

of A'Ijs projection in our basis given by XI's columns. in order. The orthogonal

projector onto span(S.j) is

X ID 'Xr.

4. Among other things wp compute the dominant eigenpair (7r.•) of PCJ:

PnJ L, ýr.[• 1 , (i) > 0. all i.

The notation 7r reminds us that it is '.ie Perron root of the matrix P~Cn1 " Our method

defines ( r.g). where

g = X9g,

9!



as an approximation to the true dominant eigenvector of M,. However we need to

estimate the quality of g and this requires the computation of Mug. By Remark 3.

Mg = X,+Ih C span(Sn.i+ 1 )

for an appropriate coefficient vector hk We can compute h from ý without invoking

any 2n-vectors at all.

In order to realize the method outlined above several technical difficulties must be re-
solved. Step 2 requires an ordering. Step 3 requires a compact representation for the projec-

tion matrix, and Step 4 requires various inner products of vectors that are not represented

in a conventional way.
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4 Theory of indicial subspaces

4.1 Indicial sets, vectors and bases

We begin by defining the building blocks of our indicial subspaces. Each such subspace is

obtained by forcing two vector components to have the same value if the binary represen-
tation of their indices have the same number of 1's, the same number of bit transitions and

the same I-bit suffixes, where l is a fixed nonnegative integer. By grouping the indices of

equal-valued components together. we obtain a partition of the collection of indices, and an

associated basis for the subspace.
We first illustrate the ideas with a simple example with suffixes of length 1. The space

we shall work in is R32 and we shall regard indices as 5-bit binary strings. Consider the

subspace C of R3" obtained by forcing two components to have the same value if their

indices have the same 1-bit count, the same bit transition count and the same trailing
bit. By grouping the indices of equal-valued components together, we obtain a partition

of {00000 ..... 11111} into sets of strings, as shown in the fourth column of the example

11



below.

eg. trailing bit # is # transitions indicia] sets indicial vectors

o 0 0 {ooooo} eo
0 1 1 { 10000} f 16

0 1 2 {OO010.00100.01000} e2 + e4 + F8

0 2 1 {11000} f 24

0 2 2 {0001100} e6 + e12
0 2 3 {10010.10100} els + e2o

0 2 4 {010101} lo

0 3 1 { 1100} e 2 8

0 3 2 {O111O} E14

0 3 3 {10110.11010} 622 + E26

0 4 1 {l111O} E30

1 1 1 {00001} el

1 2 1 {00011} E3

1 2 2 {10001} E1-

1 2 3 {00101.01001} f.i + e9
1 3 1 {00111} 6

1 3 2 {10011.11001} e19 + E 25

1 3 3 {01011.01101} fIl + e1 3

1 3 4 {10101} f21

1 4 1 {01111} E15

1 4 2 {IO0111I011.11101} e 23 •+ E 27 +C- 29

1 5 0 {11111} E31

We call each member of the partition an indicial set. To each indicial set I. we can associate

an indicial vector, which has ones in positions whose indices are in I. and zeros elsewhere.

Each indicial vector is therefore z sum of vectors from the standard basis {eo ..... C31}.

These vectors are shown in the last column of the example. A moment's thought will reveal

that they form a basis for the subspace C.

Formally. we define

Definition 4.1.1 Let n > 1. 0 < k < n. 0 < t < n - 1, and , E {O. 1} with H,.] <_ n.

Define

In. E {o, 1}n : A has k is and t bit transitions, and w is the Iwi-bit suffir of A}.

Ink.t is called a suffix-based indicial set. For a given w E {O. 1i with jwI < n, we call a

pair k. t legitimate if 'I.k.t #0

12



eg. Ij.o.o = {0000}. 113, = {. 01. 3101}. I=l.2.2 = {1001}.

WVe leave it as an exercise for the reader to verify that 14 = 3 .

Definition 4.1.2 Suppose E C {0, 1}", n > 1. Define the vector xE E R 2
n by:

S1 if O (i) E EXE~i):=0 < i< 2n~- 1.
0 ifa(i)n ( . E

xE (considered as a function on integers) can be regarded as the characteristic function XE

of E. If E is a suffix-based indicial set, i.e. E = Ik"t for sonic k and t. we call xE

a suffix-based indicial vector and we also write it a' xn Note that x@ = 0. and that

IIXEI12 = JEl.

Definition 4.1.3 Let n > 1, 0 < I < n. Define

Sn. :={x:.k.t = 1. k. t legitimate}.

An order will be imposed on Sj in Section 5.1 and so u'e call S,,l an indicial basis and

span(S,,.I) an indicial subspace.

In discussions where the value of n is assumed fixed, we will omit it in writing indicial

objects. Thus. we write I.k.t and X.,.k.t instead of I.kt and rwkt respectively.

In an analogous fashion, we can define prefix-based indicial sets J' vectors y. and

bases T,1. It turns out. however, that prefix-based indicial objects can be derived from

corresponding suffix-based ones. This will be explored in Section 4.4.

We note here for future analyses some fundamental properties of suffix-based indicial

sets, vectors and bases. We urge the reader to go through them carefully.

Fundamental Properties

Proposition 4.1.1 For fixed n and 1,I, the nonempty indicial sets 'I.k.t are disjoint. Thus

for 0 < I < n, Sn.1 is an orthogonal set (i.e. for x. y E S,.t, x 0 y • x y = 0) and so is

linearly independent.

Proposition 4.1.2 For fixed n and IzI. the collection of nonempty indicial sets I' k. ,s a

partition of {O.i}I. Thus for each 0 < i < 2n_ -1. there is a unique x E S,.1 with x(i) = 1.

Proposition 4.1.3 The trailing bit and the parity of the bit transition count t of a nonempty

string p determines its leading bit.

Proof. An even number of transitions (viewing from the right end of p to its left end)

preserves the trailing bit whereas an odd number of transitions reverses the trailing bit. r

Proposition 4.1.4 The strings in each indicial set I'.k.t, n > 2. E • E, all have the same

leading bit since:

(a) the trailing bit of.,; determines the trailing bit of each ' E I'.k~t'

(b) by Proposition 4.1.3. if t is even. the leading bit of each u E 'kt must be the same

as its trailing bit: if t is odd. the leading bit must be different.

13



4.2 Action of duodiagonal matrices on indicial bases

Our primary goal is to analyze the structure of the column projection matrix P1< and of tie

row projection matrix pRj. This requires us to understand the action of the transfer matrix

M, on basis vectors x in Sn, for 1 > 1. In this section. we shall see how to decouple the

action of M11. and thus express MAx as a linear combination of indicial vectors. Section 4.3
then analyzes the structure of PC, and pR for I > 1.

Let n be a fixed integer > 3. and I be a fixed integer > 1. Recall that PC = D-1'1MX

where the columns of X are vectors in S•., and Dx = XX. To elucidate the action of .I ,

on X, we introduce a general class of duodiagonal matrices Un. of which M, is a special

case. We first illustrate it for n = 4:

0 0

U0  
U 2'4

0  
U

o 0
: 0  U2

0 0 2

SU03 3

U2 - U2

U(:40- :-=I(•) 0--×-• .3

UI0 "1 °

3 a 3
20

U 1  3I

SU'° o Io

1 3
U1  .3

'U0 0
U1  U 3

U1  
U 3I

U3 13
U1  U3 J

In general, we consider the 2 n x 2' duodiagonal matrix defined below:

Definition 4.2.1 Let n bean integer > 3. The 2' x 2n dutodiagonal inatflix

Un U 0  U 1  U1  U2  2 .

2 U (O 01U 2 U2 ( U3 1L3

abbrevialed by Un, is given by:

[01,Io) 2n 1 02""1 1~-2
uwhe re

= ( E R 2- 1 x2n. (u(0) - 0

14



U1  0
0 2l

[T(1) IM) R2,,-1 ×2,-2. IT ) 0

0U(1) 0 ul

-r
(2)  0 0o

n2 _ L((2) ] E R20- x2 - ( _

ER 2

0 U2©u(2) 0 a 3

Ur(3) 0 u 0

1, 3(3 ) 3R2--1 x 27--2 j (3) = U3 0
= ". •0 U3

17[(3) 0 U3

The kth column of U, is denoted by Uk. k = 01.... 2- 1.

The transfer matrix Mn is equal to

K a a ~ )b - -1 b- b-
b b c c b1 -1 c-1 C-1

Our goal in this section is to show that the result of applying Un' to an indicial vector
can be expressed as a linear combination of 2 or 4 indicial vectors. Before beginning the
analysis, we illustrate the ideas by working out the action of U5 on some of the basis vectors

in S5.1 in the example below. The columns of the 32 x 32 identity matrix 15 will be denoted

by {eo. el.. ... e31 }. We urge the reader to go through the example carefully, and to observe
in each case how the result of applying U5 to an indicial vector could be expressed as a

linear combination of 2 or 4 indicial vectors.

eg. (a) =1.2 {00010.00100.01000}. x5+

5.r0o. 2  . = f2 + f-e4 + ('8s
.5 -12 +r U54 +r "Us

= U2 + U4 + U8

= 64 + u0Ces)+ ( ~f-8 +±ie9 )+ (uf6 +l-7

=Ug(C 4 + CS) + U4(e5 + E9) + UOIC16 + U11

05 1 5 05 5
SUOX 0 0 .1. 2 + U0X 0 1.2. 3 + UIX 0 0 .1.1 +- UX01.2.2

(b) I.2.3 = {10010, 10100}, X0 2 3 = e18 + C20,
, Z5

.5 0.2.3 -= U18 + U20

0 1 0 1= (1 2 C4 + U2 es) + (u2es + u2e9 )
u0 5 1 .5
-- 2"0.01,2 + IU2 X 0 1 ,2.3

15



("5

( c) 1 14 .2 = { 10 1 1 1 . 1 10 1 1 . 1ll 01} . 2 1 2=,5+ 7 + ~ 9

"- 1l.4,. 1123 + Z127 + 1-29

1= (2 e 1 4 + U 3 1 5 ) + (U 2 22 + U3 23 ) + ( U.2t 26 + it 3 E)

U5X ,4 2 --- 3•2 "3r 312 3f27)

U 2 5 + 35 + 25 3 5
U2 X 1 0 ,3. 2  U 2 1 .4 . 1 +31:10,3.3 + U3 X.4.2

(d) 13 = {00111}. x. 3. 1  C7,

x 5

15X,3.1 = U7

= 2 3= 0 e14 + U0E15

=2 5 3 5
-UoX 1 0 ,3, 2 + U0X11.4,1

Efficient processing with duodiagonal matrices U, depends on the following key obser-
vations regarding their nonzero entries:

(a) the nonzero entries of Uk occur exactly at positions 2k mod 2' and (2k + 1) mod 2 .

(b) the parameters i.2i and u2 +'1 (i = 0.1. j = 0.1.2.3) are the nonzero entries of
2 i

1I2,-2j+2k+i, 0 < k < 2T-3 - 1.

eg. for C., the parameters u2 and u3 (i.e. i = 1. j = 1) are the nonzero

entries of 1g. u11 . U13 and ui,•.

Equivalently the parameters u2i and u 2i+1 are the nonzero entries of Uk. for those

k E {0.1.....27 - 1) where the leading bit pair of a,(k) is 72(j) (the 2-bit binary

representation of j) and the trailing bit of on(k) is 71 (i) (the 1-bit binary representa-
tion of i). In the above example. the only 5-bit strings with leading bit pair 01 and
trailing bit 1 are

a5(9) = 01001, a,5(11) = 01011. a 5(13) = 01101 and a 5(15) = 01111.

Sincc our indicial subspaces are characterized using bit strings, we would like to charac-

terize the positions of the nonzero entries of Un similarly. In particular. we need operators
on bit strings that correspond to multiplying by 2 (and then possibly adding 1) modu1lo0 2n.

Th, operators 2-; and 2.,; + 1 defined below accomplish that. We urge the reader to read
the definition with care.

Definition 4.2.2 For a nonempty string ,. the strings 2., and 2,,: + 1 are defined by:

2,,; : ,,•(2) o,,(3) o... ow(jaj) o 0

and 2. +i := _;(2)o (3)o-...o,,(I-'])o1.

It is easily verified that v(2,') = 2v(•) mod 21!1 and v(2." + 1) = (2v(.o) + 1) mod 21-1. TvE

extend the definition to sets of strings: for E C {0. 1}I. n > 1,

2E:= {2.,,:.,EE} and 2E+1:= {2.'+1:-:EE).
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Note that for a nonempty stringw.:. 2.,; and 2"w + 1 are suffixes ofwoO and ;o 1 respectively.

Proposition 4.2.1 restates observations (a) and (b) in terms of bit strings.

Proposition 4.2.1 Let 0 < k < 2' - 1, and let p = a,(k). The nonzero entries of uk are

u'21 and u2'+1. where i = v(p(n)) and j = v(p( 1)o p(2)), and they occur at positions v(2p)

and v(2p + 1) respectively.

We remind the reader that for a string p E {0. }n. v(p) denotes the integer value it

represents.
We now consider the action of U, on a special kind of indicial vector. Suppose E C

{0. 1}n is such that all its strings have the same leading bit pair pj and the same trailing

bit At. Recalling that a matrix-vector product is a linear combination of the columns of the

matrix with coefficients given by the entries of the vector, we see that

U"xE = Z Uk = Z U•-.
k where k where

x Ejk) = I an (k) E E

From Proposition 4.2.1, the Uk'S involved in the vector sum have the same two parameters

U2' and u2`1 (where i = v(pt) and j = v(pj)) as their nonzero entries, and those entries

have indices in v(2E) and c(2E + 1) respectively. We have established the following:

Theorem 4.2.2 (cf. Theorem 2.3.2. [Hengl]) Let E C {0. 1}n. n > 3. be such that all its

strings have the same leading bit pair ut E {0.112 and the same trailing bit pt E {0. 1)1.

Then
2z 2i+1

nxE = uj X2E + uj X2E+i

where i = v(,t) and j = v(pj).

Theorem 4.2.2 suggests that for a nonempty indicial set E = IL.k.t (1). = 1), the result

UnxE can be decomposed by partitioning the strings in E according to their 2 nd leading
biT. We formalize this below.

Definition 4.2.3 Let E C {0. 1}). n > 2. 1,1e define

E° = -{aEE:,(2)=0}

and El := {wEE:w(2)= 11.

i.E. E° and El are subsets of strings in E having 2 ,d leading bit 0 and 1 respectively. It

follows from the definition that E is the disjoint union of E° and E1 .

eg. E = {0011.0100.0101. 1000}. E° = {0011. 1000}. El = {0100.011}.

E = {0010.0011}. E° = E. El =.

Theorem 4.2.3 (cf. Theorem 2.1.7. [Hen9l]) Let E = I.k,t. n > 2. w $ r. Then 12E°[ I

12E° + 11 = -E°
0 and 12E'l = 12E 1 + 11 = JE'I.
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Consider now applying U, to the indicial vector X,,.k.t E S,.j. Let E = IL.k.t. Then the

strings in EO have the same leading bit pair and the same trailing bit since Proposition 4.1.4

determines the leading and trailing bits. and the 2 nd leading bit is 0 by definition. Similary.

the strings in E 1 have the same leading bit pair and the same trailing bit. Thus E° and E'

each satisfy the conditions of Theorem 4.2.2.

Corollary 4.2.4 Let E = .ka.t. 1,,; = 1. be a nonempty indicial set. and let pi denote the

leading bit of strings in E. Then

U'nxE = (fXEO + UnXE1
2i E 2i+1 2i 2z+1

=(U x2E0 + u, X2Eo+l)+ (uj/x 2 E1 + uj, X22E+)1

where = r(,(1)), j = ,(plt o 0) and j' = v(fi o 1).

The vectors appearing in (1) are in fact suffix-based indicial vectors, as Theorem 4.2.5

shows.

Theorem 4.2.5 (cf. Theorem 2.1.8. [Hen9l]) Let E = I n > 3. 0 < K it. Then

2E°. 2E° + 1. 2E 1 and 2E 1 + 1 are themselves suffix-based indicial sets. and there exis.t

6k, = ±1 and bt, = ±1. i =0.1.2.3. such that:

2E- = I oO.k+6Sko.t+6to _ 1 2-2.k+6ko.t+6to,

2E 0 + 1 = Iwol.k+6kl.t+6tj 9 I'2w+1.k+6kit+6t1 "

2E'- I .O.k+6k 2 .t+6t2 9 12..v.k+6k 2 .t+bt2 '

2E1 + 1 = I1ol.k+6k3 .t+6t 3 9 12w+1.k+6k3 .t+6t3 -

Furthermore. the pairs (6ki,6ti). i = 0.1.2.3. are distinct, and so 2E°. 2E° + 1. 2E' and

2E 1 + 1 are pairwise disjoint.

Proof. We will not prove the theorem here., but instead give the values of 6ki and Mt, for

different cases.

a) trailing bit of,,; is 0 and t is even:

2E0 = VIooJ,.t, 2E° + 1 = In•
,Aý wol.k+l.t+l "2E1 = oOkI• 2E0 + 1 - 'wo• +1t1

2E' aoO.k.t-1* 2E" + I = 1wo1.k+1.t"

b) trailing bit of . is 0 and t is odd:

2Ev = I'oO..1* 2E) + 1 = Ink•o0.k l~t- " ,ol~k.t"

2E1 = I'o0.k-l.t. 2E1 + 1 = Iol.k.t+1.

c) trailing bit of ,, is 1 and t is even:

2E = '2oO.k-1.t' 2E " + 1 = Inokt-

2E 1 
- I' oOkIt+i' 2E 1 + I = 'Wol.k.t

• o~kltl"IoBkt



d) trailing bit of .; is 1 and t is odd:

2E° = Io.k.,t+i 2E° + 1 = I'
2E1 = In Ikt, 2E' + 1 = I

Note thatifE° = . then x2Eo = X2EO+l = 0. and that ifEl = 0. then x 2 EI = X2E1+1 =

0. However. E0 and E' cannot both be empty since E = E- U El and E is nonempty. In
addition. the nonzero vectors among X2Eo. X2EO+l. X2E1 and X2 E1+1 are distinct from each

other since 2E°. 2E° + 1. 2E1 and 2E1 + 1 are pairwise disjoint bv Theorem 4.2.5. So UnE

is a linear combination of either 2 or 4 suffix-based indicial vectors.

We can in fact relate U,xE to the vectors in the basis S, 1.. Define a subvector of a vector
x to be a vector obtained by setting zero or more entries of x to 0. i.e. a subvector has the

same number of entries but more of them are 0. From Theorem 4.2.5. x2E0. x2E0+. *xE1

and X2E1+1 are subvectors of different vectors in Sn,. since 12.,;J = 12.: + 1i = 1. Thus UnXE
is a linear combination of either 2 or 4 subvectors in 5,1.

To recapitulate our analysis, we rework the example given at the beginning of the section.

eg. (a) E = 1.2 = {00010. 00100.01000}, E0 = {00010.00100}. El = {01000}.

2E° = {00100.01000}. 2E° + 1 = {00101.01001}.

2E' = {10000}. 2E1 + 1 = {10001}.
U-5xE = u 0X IX +U0x2 1 t

0= ox 2 EO + u0X 2 E0+l + x " E + l2E+1

(b E = I-.,02 = {10010. 10100}. E0  {10010. 10100}. El =

2E 0 = {00100.01000}. 2E° + 1 = {00101. 01001}.

U[sxE = u°X2EO + u2X2E0+l

(c) E = 11.4.2 = {10111. 11011. 11101}, E0 = (10111). E' f 11011. 11101}

2E 0
- {01110}. 2E° + 1 = {01111}.

2E1 = {10110. 11010}. 2E1 + I = {10111. 11011}

5XE = 1 LX22 EO + U2X 2E0+1 + L3X2 E1 + U3.Z2 El+l

(d) E = I13. = {00111}. E0 = {00111}. El = 0.

2E 0 = {01110}. 2E° + 1- {01111}.
=3 2 3

.•E = uQx 2 EO + uOX2EO+l

4.3 Structure of the column projection matrix

Armed with our understanding of the action of duodiagonal matrices on suffix-based indicial
bases. the analysis of the structure of the column projection matrix PC1 becomes straight-
forward. We shall show that for I > 1. pC is sparse with either 2 or 4 nonzero entries per
column, and we shall precisely locate the positions of those entries, and express their values

in a wax that enables them to be computed without using any vectors in R2".
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As before, we shall work with the general duodiagonal matrix U,. The corresponding

results for .M1, can be obtained by substituting

a an ~ > b b)( a-' a-' ) b-1 b-1)
= L b b ;c c ;b-1 b-1 c-1 c-1

Cor:sider the projection matrix P = DX'X1.",X. where the columns of X are the

vectors in S,.1 and DX = X'X. We index the rows and columns of P by the triple (,. k. t)

where X..k.t E S&.1. Then the entry in row ( V,. k'. t') and column (,, k. t) of P is given by:

1 X,,.kt, 112 ( " 't" U X k,) 1, . ( ,.k x .k ).

Let E = 1,,.k.t. The analysis of Section 4.2 shows that UxE is a linear combination of either

2 or 4 subvectors in S,.1 (with each subvector arising from a different basis vector). Since

the vectors in Sr, have pairwise disjoint supports (cf. Proposition 4.1.2). P is sparse with

2 or 4 nonzero entries per column arising from the nonzero inner products (.r•,.,k'.t. U,.XE).

Specifically. column (,;. k. t) of P has 2 nonzero entries if one of E° and El is empty. and

has 4 nonzero entries if both E° and El are nonempty.

Theorem 4.3.1 Let E = I.k.t, j,•l = I. b- a nonempty indicial .qet. and for each bit string

in E denote the leading bit by pl. Let bk,. Mi. i = 0. 1.2.3. be as given in Theoref m .. 2.5.

and let i = v(,'(l)). j = r'(yl oO) and j' = v(ylj o 1). If E-0  0. then column (.4. k. t) of P

has nonzero entries in rows (2.,;. k + 6ko. t + NtO) and (2' + 1. k + bki. t + 6t, ) with values

1 r1 2

112.,.k+6k0 .t+0t0o I k +t2w.k+6ko.t+6to E
=1 2t 1E0 by Theorem 4.23

I2I.,.k+bko,t+6to T

and
1 1u' 1lI

i(X2,o+1.+6k,.t+ýt, . Un xF) = 2i•+1 :,oI
2,+ 1.k+6kI ,t+6t, () 1 112,+1.k+6k, .t+6t,

rf spectively: if El 0, the n column (,. k. t) has nonzero entries in rows (2,:. k + hk2 . t + t2 )

and (2,. + 1. k + bk 3. t + bt 3 ) with values

1 (x2. .'k+6k 2 .t+st2 . (nxE) -- 1 2 "IE' I

II2.,.k+.5k 2 .t+ 2t I II2.,,.k+6k 2 .t+6t2,

and
212 1 1

1. Kx2"+1',+'k 3 t+6t_" UxE) = ++ I

respectively.

Note that in Theorem 4.3.1. we could precisely locate the positions of the nonzero entries

of P. More importantly. each inner product (involving two vectors in R2% ) was expressed

as a product of an entry in U, and the cardinality of a suffix-based indicial set. Section 4.5

gives formulas for those cardinalities. Thus the projection matrix P can b( computed in

timE proptortional to IS, 11 and without using any vectors in R 2n.
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4.4 Structure of the row projection matrix

The analysis of the structure of the column projection matrix PC"J could be adapted to the

row projection matrix pR, = Dj 1.YMT1 by considering directly how multiplication by M,1

affects prefix-based indicial vectors. It is. however, more illuminating to exploit a duality

between suffix-based and prefix-based indicial vectors arising from reversal of bit strings.

Definition 4.4.1 Let n be a positive integer. The binary reversal matrix Ri E R 2'x 2 l

is the matrix whose only nonzero entries are ones in row, i and column j. where the n-bit

binary representation of i and j arf the reversal of each other, i.e.

= 1 if 0(i)= (an(j))R 0• i.J < 2n -1.(Rni~ = 0 otherwise O <ij<_2 - 1

0001 0011 0101 0111 1001 1011 1101 1111

0000 0010 0100 0110 1000 1010 1100 1110

1 0000

0001

0010

0011

0100

0101

eg. - 4  = 11 0110
eg. .1?40111

1000

1001

1010

1011

1100

1101

1110

1111

R, is a reflection: it is symmetric. involutary (F2 = I_ ) and orthogonal (kRR, = 2 = 1)

If e, E R2" is the jth column of the identity matrix In. then R?,c = el where we write

v((an(j))R) as j. Therefore for the suffix-based indicial vector X,.k.t. we have R,•nX..k.t =

Y,.kt since R, does not change the 1-bit count and the bit transition count of an n-bit
string. We thus have a one-to-one correspondence between suffix-based indicial vectors in

S,.1 and prefix-based indicial vectors in T,1. and RkS,.i = {RJ x : x E Si.)} = T,.1. By a

suitable arrangement of the columns of Y. we can make Y" = kRX. Then

pn 1. = Dj'Ai"M, = Dj. 1(XJ/?;)AIr•(RX) = D- X'(R,AM-R,)X
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since

D)- = 1' = (XtT,(R,,X)= X(RR,). = X'X = D.x.

The sparsity structure of R,,11BR, is identical to that of 11,, (the parameter values per-
mute). as Theorem 4.4.1 shows. WNe will not prove the theorem. but instead illustrate it for
n = 4. Note that for a matrix B E R 2 nX 2 ". B?,, is a permutation of the columns of B with
columns i and j interchanged if I = 1 (0 < ij < 2' - 1). while R,,B is a permutationi of
the rows of B arising from the same interchange of rows. In particular. the remarks hold
for U,;R 4 and R4 (U,•R 4 ) respectively.

0001 0011 0101 0111 1001 1011 1101 1111

0000 0010 0100 0110 1000 1010 1100 1110

U0 11
U0  0U0 2 U

2 3

0  U 0  
I

0 1

__________ 2 U 03

0 0 1

Ui 0

1i U

U 0 t

_______________ 2__ _ _ _ _ _ 111

0 1
U2 U

U2 3°2 (2

o 1 U 22

0 1
3 3

2 23 3 '
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0001 0011 0101 0111 1001 1011 1101 1111
0000 0010 0100 0110 1000 1010 1100 1113

0 0 1 0000
•2 3 oo
U0  U 0  0001

0  U 1 0010
2 3

__________10 _______ 0  0011

Ito Ul0100

u 2 1 3 0101
0 1

u u 1  0110

U,= 0111

01
U 2  U 2  1000

u 2 22 u 3100
2 3

U2  
U2  

1010

U 
2 3
2 __________112 1011

0 1
'U3 113 1100

3 U3 1101

oU 0 1110
U3  13

L u 2 
uo3

U3  U 3  1111

u0U 01 0000

0 It1 0001
2 12

u0 u1 011 1  U1  01

0 1
U 3  _______ U 3  0011

0 1
u 0  

U100

2 U2 0101

u0 it1 0110
U1  1L

u0 u1 01

R4U? = U3 _______U 3  01

Ug t 1000

u2 100
U2  

U 2  10

2 1010

u2 u3
_________ 3  

U 3  1011

2 3
Ito U0  1100

u2 3
12 U 2  1101

U 1  111

It2 u3 11
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Theorem 4.4.1 (cf. Theorem 2.4.1. [Hen91])

~0 0 1 U 1  2 U 2  U 3  3

0 0 1 1 3] 2 3 U3 /

S,0 U2 Uo ) U ,: U 3

( U

Applying Theorem 4.4.1 to Rn'kAP, we have

R-~R a aN ( b)I (b -1(~ a-' b)]b-=iM ?1b b ;c c ;b-1 b-1 :c-1 C-_ R

-- Un' a- b-_1 a- 1 b_1 I b-_I cc' bl cc'

and so pR has the same structure as Pc" In fact, they are diagonally similar (see Ap-

pendix A).

4.5 Selected combinatorial results

Before we state without proof some combinatorial results regarding indicial subspaces. we

present some selections to get a feel for the quantitative behavior of our indicial subspaces.

Table 1 gives the cardinality of the indicial basis S,•. and the maximum size of an indicial set

I..k.t (with 1,,; = 1) for I = 2.4. The latter quantity is by definition equal to the maximum

number of ones appearing in a basis vector in S,1. We see from the table that the indicial

bases have cardinalities which are very small compared to 2': in contrast. the basis vectors

have a large number of nonzero entries. For example. for n = 30 and I = 2. we approximate

R230 by the subspace spanned by the 1628 basis vectors in S 30 .2, the "largest" of which has

5.95 x 106 ones appearing in it.

n 2n ISn.21 max II. ,n I 1Sn.41 max Z,..t
,jk. t • k, t

_1"j = 2 I'1=4

3 32 28 2 32 1

10 1024 148 20 352 6

15 32768 3( 400 1072 120

20 1.05 x 106 688 8820 2192 2520

25 3.36 x 10' 1108 2.33 x 105 3712 63504

30 1.07 x 109 1628 5.95 X 106 .5632 1.59 X 106

Table 1: Combinatorial properties of suffix-based indicial sets

In the theorems below. n and I are positive integers with I < n.

Theorem 4.5.1 (cf. Theorem 3.1.2 and Corollary 3.1.4. [Hen9l]) The cardinaliti~s of all
the nonernpty 1-bit suffix-based indicial sets .= 1, ar given by:
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(a) if 0-o:
n

(i) 110 . .o1 = 1.

(ii) for 1 < k <n- 1, 1 < t < min(2k,2(n- k) - 1),

J ( 1 nri ) (I 21 if t even

IIO'.k.tI

k k-1 nt- k- 1 i d

(t - 1)/2)( 1) if t1odd

(b) if = 1:

() IIY. 0o = 1,

(ii) for 1 < k < n - 1. 1 < t < min(2k - 1.2(n- k)),

( k-1 ) ( n-k-i ) if t even

I nl. k.tl I

(t - 1)/2 (t- 1) ift odd

Theorem 4.5.2 (cf. Theorem 3.3.1. [Hen91]) Let ý,, be a fixed string of length 1, and let k'

be the number of is in ,z(2) o ... o o(l). and t' be the number of bit transitions in %. The

cardinalities of all the nonempty indicial sets In.k.tare given by:

(a) i~f(1 0 :

(i) I2.,.I = 1,

(ii) fork = 1. n - , t = 1..... min(2k.2(n- I - k) + 1),

II .k+k,.t+tl = I n-1+10.k t •

(b) if.,(1) =1

(i) 11n.nn, -+k,+l.t,["1

(ii) for k = 1 ..... n - 1. t= 1. min(2k - 1.2(n -l- k + 1)),

-I•.k+k,.t+tI = .k.t

Theorem 4.5.3 (cf. Theorem 3.3.2. [Hen91]) Let , be a fixed string of length I. For

n =- I - 1.1 (mod 4),

maxjI1,ktI [(n U- I+1)/2j -2 f(n -lI+1)/21)

k.t L(n -l+1)/4J - L(n -+ 1)/4J
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and for n =I+ 1.1+2 (rood4).

ma I',~tI= ( [(n- 1+ 1)/2j -1) f( k- I+1)/2]-k.t [(n - I + 1)/4j L.(n - I + 1)/4]

Theorem 4.5.4 (cf. Theorem 3.3.3 and Corollary 3.3.4. [Hen9l]) The number of nonempty
indicial sets In..t with I = 1 is

21{1+(n-l+l)(n-l))< n221 -1l
2

and so are the cardinalities of the indicial bases Sn.1 and T,.1, and the orders of the projection

matrices P, and P",I

Theorem 4.5.5 (cf. Theorem 3.3.5. [Hen9l]) The number of nonzero entries in each of
pC, and pýR IS

21+2(1+ + -)(n-1-1)
2
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5 Implementation of Indicial Subspaces

We describe in Sections 5.1 through 5.5 an implementation of one cycle (i.e. for fixed n > :3

and I > 0) of our method of minimal representations. The foci of our discussion will be

(a) the data structures for representing indicial sets I,.k.t (with AI;, = 1) and corresponding

vectors in the approximating subspaces span(S&,.) and span( Ta. I). and

(b) efficient algorithms for manipulating such vectors.

Although a vector x in span(S~,j) has 2' entries, at most lS,.ii of them are distinct and our

algorithms for manipulating these vectors (eg. finding l~xii) will exploit this property. Most

of them will take time O(,8.11) = 0(21- 1 n2 ). We emphasize that the basis S,.* is never

explicity represented in our implementation.

5.1 Data structures for indicial sets and subspaces

Total ordering on indicial objects In the preceding development of the theory of indi-

cial subspaces. the ordering of the nonempty indicial sets Iw.L.t with Iif = I (or equivalently.

the ordering of the basis vectors in S, 1,, and T".1) was unimportant. However. any imple-

mentation of our method has to choose an explicit ordering and the representation of the
projection matrices PC and pR depends on it.

n.l n n.1

To make our discussion uncluttered, we work with triples (.,,. k. t). IwI = 1. rather than

directly with indicial sets L.k.t and basis vectors x,.k.t.

Definition 5.1.1 -4 triple (,z.k.t) is legitimate if the corresponding indicial set I,.k.t is

nonempty (or equivalently, X.,.k.t is a basis vector in Sn.0). We define a total ordering -<I

on legitimate triples as follows: (,;. k. t) Pj (,'. k', t'),. if and only if

(a) v(;) < v(w'). or

(b) v(,.;) = v(•') and k < k. or

(c) v(7) = v(/'). k = k' and t < t'.

The ith triple in this ordering will be denoted by ("ýi~ki.ti. 0 < i _ - 1. For a

legitimate triple (,. k.t). C(. .k.t) denotes its ranking under -.< (i.e. '(•k,.ti) = i).

We display the ordering for n = 4 and 1 = 2. where the nonempty indicial sets I,.k.t
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(k,, = 2) are singletons.
(.k. t) w k t L,k.t

0 00 0 0 {0000}

1 00 1 1 {1000}

2 00 1 2 {0L00}

3 00 2 1 {1100}

4 01 1 1 {0001}

5 01 2 2 {1001}

6 01 2 3 {0101}
7 01 3 2 {1101}

8 10 1 2 {0010}

9 10 2 2 {0110}

10 10 2 3 {1010}

11 10 3 1 {1110}

12 11 2 1 {0011}

13 11 3 1 {0111}

14 11 3 2 {1011}

15 11 4 0 {1111}

Induced ordering on prefix-based indicial objects The ordering of the legitimate

triples induces an ordering of the nonempty suffix-based indicial sets I.,.k.t = 1) and the
basis vectors in S,•j. Thus in forming the column projection matrix Prj. = D•'X'A,•X

where Dx = X'X. the columns of X are the vectors in S,,l in the prescribed order. We note.

however, that in showing that the projection matrices PRl = D' 1 Y"M7 Y (Dy = Y"Y)
and Pý, have the same sparsity structure (Section 4.4) we exploited the duality between

suffix-based and prefix-based indicial objects. Specifically. we assumed that Y' = RX.

where iR, is the 2'• x 2' binary reversal matrix. Recall that RnXw.k.t = Y.R.k.t. and so the

columns of Y must be ordered in ascending order of v(.,,R). k and t. Just as the development

of the theory of prefix-based indicial subspaces was simplified by relating it to suffix-based

indicial subspaces using R,. the implementation of prefix-based indicial subspaces enjoys a

similar simplification. In fact. the algorithms that we will develop for suffix-based indicial

subspaces carry over to prefix-based ones with little or no change. Henceforth. we shall no

longer mention the matrix Y. but use the equivalent mnatrix RnX.

Coefficient vectors Before proceeding further with implementation details. we introduce

some terminology that will be useful in the discussion. For a vector g E span(S,•.). there

is a unique representation of g with respect to the basis S,.1 (under the total ordering -<n).

We shall call this representation the suffix-based coefficient vector for g. and denote it by

ý. Note that ý E RI'5-.1. and g = X.. We define prefix-based coefficient vectors similarly.

Since JS. 1j = IT,.I by duality. we shall identify RIn'-.LI with RIT,,I. The type of a coefficient
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vector will be clear from the context.

Encoding the total ordering We now consider the task of encoding the ordering. To

justify our implementation we describe a simple approach and point out its defects. A
straightforward approach is to use the triple (,,;. k. t). 1, = 1. as an index. Thus a vector

SE RI'5-11 would be stored as a 3D array of real numbers [O.. .2' - 1][0 ... n][0... n - I].
We note that there are two serious disadvantages to this approach. Firstly. the vector

requires 21n(n + 1) words of storage. even though IS,1,. < 21-'n(n + 1). More importantly.

not every triple (•. k. t) is a legitimate index and so each access to the elements of array

J requires a check on the values of k and t. In particular. the subroutine which extracts
eigenvalues must perform the check repeatedly.

Our indexing scheme The weakness of the simple approach lies in its noncontiguity

of storage. i.e. there are -gaps- in the 3D array which are not used. We overcome it by
using an indexing scheme which maps legitimate triples (-*. k. 0) to the nonnegative integers

{0. 1. S..,. - 11 using the total ordering -<j.

Data structures The indexing scheme is realized using two complementary data struc-

tures: one mapping triples to integers, and the other. integers to triples. We first illustrate

the ideas using the example (n = 4. 1 = 2) given earlier. Note that for each of the four pairs

of (-;.k) having two values of t (namely. (00. 1). (01. 2). (10. 2) and (11. 3)). the value

(.k. t) - t is constant. We can thus tabulate ( k. t) - t in a 2D index array as shown

below.

v(0') k=0 k=l k.2 k=3 k=4

0 0(t =0) 0(t= 1.2) 2(f 1)

1 3(t=1) 3(t-2.3) 5(t=2)

2 6(t=2) 7 (t 2.3) 110 (t =1)

3 i1(t= 1) 12(t= 1.2) 1.5(1 =0)

So for a proper triple (,:.k.t) with KI; = 2. the rank •(•,k.t) is given by index[v(,)][k]+ t.
In general. by Theorem 4.5.2. for a fixed ,' of length 1 and a legitimate k. the values of

t giving legitimate triples (;. k. t) are -contiguous-. So we can define b using a 2D array

index[O.. .21 - 1][0... n] (i.e. index has 21 rows and n + 1 columns. with row subscripts

running from 0 through 21 - 1 and column subscripts running from 0 through n):

k. t) = index[v(w)][k] + t.

or

in.dex[v(,)][k] = k. t) - t

where t is the smallest value permitted by Theorem 4.5.2. Note that for each ,, E {0. 1}).
not every k in the range {0 ..... n} and t in the range {0 ..... n - 1} are legitimate. Thus
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the index array contains elements which are actually undefined. (in fact. indfx is l)andpd

with width n - 1+ 1 by Theorem 4.5.2) and this is a reflection of the inherent noncontiguity

of legitimate triples.

The second data structure consists of three 1-dimensional arrays indsuf. iMd_; and

ind-t. each with 1,5. 1 elements. mapping an integer i E { .. S... - 1} to the (value of

the) suffix. the 1-bit count and the bit transition count respectively of the ith triple.

In addition to the above two data structures. we have another 1-dimensional array

count[O..I..,Si.11 - 1] where count[il] gives the cardinality of the 1,h indicial set.

Abstractions for data structures To hide the details of our data structures from the

rest of the program. we provide two -converter- subroutines. The first subroutine. get-triple.

takes as input an integer i and returns the ith triple (,i. k. t, ): the second subroutine

get-index. takes as input a triple (;. k, t) and returns 1,.k. t). The subroutines are easily

defined using the data structures.

Initialization of data structures The code in Figure 1 initializes the data structures by

using Theorem 4.5.2 to enumerate the legitimate triples in order. The variable indcxcount

gives a running total of the number of triples enumerated so far. and will therefore be equal

to 1,5,11 at the end.

Advantages of Indexing Scheme We remark that our indexing scheme provides a useful

abstraction for indicial vectors. Note that a coefficient vector ý E RI$n.1I has two interpre-

tations: it can be regarded simply as an IS,•.dI-dimensional vector, or more importantly, it

gives the coefficients of the linear combination for the associated vector g E span(S,.,):

S= (2)

Our indexing scheme provides a clear separation between these two interpretations. By

itself. the array .[...] is just the standard representation of the vector J. and this is the

view seen by the subroutines for extracting the dominant eigenvalues and eigenvectors of

the projection matrices. When coupled with the indexing scheme. ý can be regarded as a

coefficient for g in (2). Indeed. we find that for 0 < I < 2n - 1.

g(i) = ý[4(p(n-I+1)o...o y(n). K(u).7(p))] wherey=o (i)

= ý[gct_index(u(n-1+1)o ... 0o I(n). K(P). r(p))].

Thus we can easily find the value of a component of g given its coefficient vector g.

5.2 Construction of projection matrices

Data structures for projection matrices As was shown in Sections 4.3 and 4.4. the

projection matrices �n. and P,.1 are sparse with either 2 or 4 iionzeros per column. In fact.
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variable index-count. ;. k'. t', k. t

index-count - 0

/* Enumerate strings of length I with leading bit 0 */

for .:' E 0o {0.1}'-1
V'-- K(.i(2) o...-o ,(I))

t *- r(.7)

ind.suf[index-count] - t'v(.)

ind-k[index-count] - k'

in.dt[indezxcount] -t

index[v(..)j[k] - index-count - t'

count[index-count] - 1

index-count - inde.x-count + 1

fork = .n-I

index[v(.,)][k + k'] - index-count - (t' + 1)

for t =1. nin(2k. 2(n - l- k) + 1)

ind-suf[indexxcount] - v(.ý)

ind-k[index.count] - k + k'

ind-t[index-count] -t + t'

count[indcx-count] In-1+o 1

index-count - index.count + 1

endfor

f ndfor

cndfor

/* Enumerate strings of length I with leading bit 1 */
for.,;, E 1 of 0. 1}1-1

similar code

endfor

Figure 1: Code for initialization of indexing scheme data structures
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PL•
1 

is similar to P,C,.' (see Appendix A) and so we need only P%. We represent P",I as a

sequence of packed columns. Specifically. we have three arrays col[O ... d- 1]. row[O.. d- 1].
and col-proj[O...d - 1], where d = 21+ 2(1 +(n-l)(n-1+1)/2) is the number of nonzeros in
P,',. (see Theorem 4.5.5) with row[i] and col[i] giving the position of the Ith nonzero entry

of P, 1 . and col-proj[i] giving its value.

Initialization of projection matrix data structures Theorem 4.3.1 identifies the
nonzero entries of the projection matrices, and is used in Figure 2. which constructs the
projection matrices. The 2D array M[0... 3][0.. .3] holds the sixteen (not distinct) param-

eters of M , as defined below.

M n = U, b b :( b-1 b-1:"

b b C b- b-1 C-1 C-1

The variable matssize counts the number of nonzero entries computed so far.

Applying th2 column projection matrix to vectors We briefly remark on how we
can apply P,, 1 on the left and on the right to vectors. Let ý E RIs-nL. The matrix-vector
product PCnd is formed by accumulating the linear combination (with coefficients given by
the entries of ý) of the columns of PIC appropriately scattered: the vector-matrix product

P',,, is formed elementwise by taking the inner product of § with each column of P.C.

5.3 Applying the transfer matrix to approximate eigenvectors

Of interest in measuring the quality of our approximations is the matrix-vector product Mjj.
where q is an approximation to a column eigenvector of M7 from the subspace span(S , .i).

and the corresponding product M~p. where p is an approximation to a row eigenvector
from the dual subspace span( T7, .1). In this section. we shall consider how we can effectively

compute such products in time O(IS,11). and represent them -n a manner similar to the

approximate eigenvectors.

Action of general duodiagonal matrix (4, We first consider the general matrix-vector
product Ung. g E span(S , 1). The key to an efficient computation of U7,g is Corollary 4.2.4.
which describes the action of Un on a basis vector in Sn.1 . Let § E RI-5-LI be the coefficient
vector of g. i.e.

1=0

Then

Ung = ()u 7,Xw,k,t,
1=0

is a linear combination of images of basis vectors in S,.l under the action of U, . By

Corollary 4.2.4. each such image is itself a linear combination of vectors in S,.,+,. Thus
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variable matsize. i. ~,k. t. P', t', row-index

matsize - 0

for i=..,S ij

(--.k. t) - get .iri pic~i)

determine the leading bit p of strings in E Ik=

/ * Compute nonzeros associated with E0 *

if (E0 is nonenipty)

determine k' and t' such that 2E0 = LoO~k'.t'

col[matsi-ze] - i

rou',zndex - get..indr(2. P.k't')

row[matsize] , trindex

col-proj[m . -l- 1E01 *f['(l)](zo 0)] /count[rou..Index]
matsize -mats,;ize + 1

dettcrmine k' and t' such that 2E0 + 1 I wol.k'.t'

&:ol[matsiz*e]-i

ro-w-ndex - get-index(2.,; + 1. k', t')

row~matsiZel - rou..index

col-proj[rnatsize] - JE01 * M[2vyý(l)) + 1][v(p o00)]! countrrow-index]

matsize -matsize + 1

endif

/ * Compute nonzeros associated with El *

similar code

endfor

Figure 2: Code for initializing the column projection matrix
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U,jg E span(S,,j+i). and we can compute it by building up the coefficients for each basis

vector of 5,.1+1.

Data structure for image vectors As in the representation of vectors in spani(Sht). we

impose a total ordering -<I+, on the legitimate triples (p. k. t) with I#I = / + 1. and encode

the ordering with similar data structures and converter subroutines. To distinguish them

from the subroutines for the ordering -<. the subroutine converting legitimate triples (y. k. t)

(jyj = / + 1) to their ranking under the ordering -<I+, will be called get-index-prod. and

the subroutine returning the ith legitimate triple will be called get-triple-prod. In addition.

the array count-prod[...] will store the cardinalites of the indicial sets Ig.k.t. -P] = I + 1. A

vector h E span(S•.1+l) will be represented by its coefficient vector h E RIS- 1 +÷ 1.

Code for computing the matrix-vector product Figure 3 gives the code for the

subroutine apply-matrix(§.h) which takes as input the coefficient vector ý for the vector

g E span( S,. 1 ). and returns the coefficient vector h for the matrix-vector product M_1g. The
array 1[...][...] holds the sixteen parameters of M, and was defined in Section .5.2.

Applying the adjoint of the transfer matrix We consider the dual matrix-product

M.g for a vector g E span(T,.1 ). whose coefficient vector is §. Let X 1 and Xi+i be the basis

matrices associated with the bases S,.l and ,,.1+l respectively. Then

R,-MIg = (RM•/R,)X1 ý E span(S&.1+1)

since R,.M•/• is duodiagonal. and so

M!g E R/span(S,.jl+) = span(Tn.1 +l).

The coefficient vector h of Mg is defined by

RX 1 ~lh _11'g = AfR 1,X,

and so

=li (RkAf'iRn)X 1ý.

i.e. h is the coefficient vector of the image of Xi§ E span(S,.I) under the action of the

duodiagonal matrix RMA/R,. The code for the corresponding subroutine applyvtranspose
is therefore identical to that of apply-matrix. except that the array RMR[.]. . which

holds the sixteen parameters of

R•TMR = UI a-t b- 1 
):a1 b-1  :(b- i- :(b 1 ib )1b

is used in place of M[...
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subroutine apply-matrix(, h)

output h

variable i. jil. ý;. k, t. k'. t'. image.index

for i = 0..... - 1

h[i] - 0.0

for i = 0.... ISA - I

(•. k. t)- get-triple(i)

determine the leading bit pu of strings in E = I,.k,t

/* Compute contributions from E° *7
if (E° is nonempty)

determine k' and t' such that 2E° = loo.k,.t'

image-Index - get-index(o: o O.k'. t')

h[image-index] - h[image-index] + M[2v(.4( l))][v(yi o 0)] * §[i]

determine k' and t' such that 2E° + 1 = Iol.k'.t,

image-index - get.index(w o 1. k'. t')

h[image-index] - h[image-index] + M[2v(.,(l)) + 1][V(Al 0 0)] *[i]

endif

/* Compute contributions from El *7

similar code

endfor

Figure 3: Code for applying the transfer matrix
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5.4 Computation of inner products

Various quantities of interesi derived from subspace approximations require the computation
of inner products. eg. norm of a vector, angle between two vectors, and the --ieralized

Rayleigh quotient. In our case. the vectors could come from four differemt subspaces of R 2":

span(Sr,,) and span(T,.i) containing approximate column and row eigenvectors respectively:
and span(S,,.+l) and span(T,.,+1 ) containing the images of these approximations under the

action of the transfer matrix MA, and its adjoint .1I1 respectively. Our goal in this section
is to describe efficient methods for computing the inner products.

Types of inner products Let Eg. E Rl,-l' be coefficient vectors for vectors in either
span(SnI) or span(Tjf). and let hi. h 2 ; Rl3ý'+11 be coefficient vectors for vectors in either

span(S.., 1 ) and span(T,.I+l ). Depending on the combination of the subspaces containing
the two vectors whose inner product we wish to compute. we have one of the ten subroutines

below. Here X 1 and X-+l are the basis matrices associated with the bases S.j and Sr,.l

respectively.

(a) coltcol-ip(,• 1 . 2 ) = JII. XI@2 )

- inher product of two approximate column eigenvectors

(b) row-rowip(t. ý2 ) = (,n XI&-.RXIý 2)

- inner product of two approximate row eigenvectors

ýc) col-rowip(g1 .g.2 ) = KA,•i.RX\1 2 )
- inner product of an approximate column eigenvector and an approximate row eigen-

vector

(d) colp-colpip(h,.h 2 = KX!+lhl.X 1 +1 h2)

- inner product of images of two approximate column eigenvectors

(e) rowp.rowp-ip(h.h) ,.2)

- inner product of images of two approximate row eigenvectors

(f) colp-rowpip(h,.h 2 ) =Xl+ ,•+,h2

- inner product of images of an approximate column eigenvector arid an approximate
row eigenvector

(g) col-colp-ip(ý1 .h1 ) =

- inner product of an approximate column eigenvector and image of an approximate

column eigenvector

(h) row.rowp..p(ý 1.h,)=

- inner product of an approximate row eigenvector and image of an approximate row

eigoPnvPctor
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(i) col~rowvp~p(•l.h 1 ) = (Xlq.Rxi+,ihi>

- inner product of an approximate column eigenvector and image of an approximate

row eigenvector

(j) row-colpip(9 1.h 2 ) = •R,ýXI91.XI+Lh)

- inner product of an approximate row eigenvector and image of an approximate

column eigenvector

The reader should note that the arguments to the subroutines are coefficient vectors. i.e.

the inner product of two vectors is computed from their associated coefficient vectors.

It is easily verified (using the orthogonality property R•R, = I.) that subroutines (a)

and (b). (d) and (e), (g) and (h). and (i) and (j) are identical:

"* row.row-ip( , 92) = colcolUp(, g2)

"* rowp-rowp.ip(hi . h2 ) = colp-colp-ip(h 1 , h2 )

"* row-rowpip(§1 , hi) = colcolp.ip(ý,. h)

"* row-colpip(g1 . h) = colrowp-ip(ý,.hl)

Thus we have six different types of inner products to consider.

5.4.1 coLcolip(01 . §2)

We begin by considering the simplest inner product. that involving two vectors 91.92 E

span(S,.). whose coefficient vectors are §1 and 92 respectively. i.e. gi = X 1 .ý. 92 = X1§2.

Simple approach The straightforward approach to computing the inner product of 91

and g2 is to accumulate it elementwise. We saw in Section 5.1 how we can find the value of

any component of g, (or 92) from its coefficient vector §1 (or M2). Thus we can evaluate

2n -1

(91.92) = Z 9 1(i)9 2 (i)
i=0

by accessing the appropriate entries of §l and q2. This simple approach has one serious

flaw: it takes time 0(2') even though g, and g2 each have at most IS,.1 < 2`-n 2 distinct

entries.

Efficient computation The key to an efficient computation of (91. 92) (and the other

inner products that we shall consider) is to choose an appropriate basis and to express the

computation in terms of that basis. The simple approach (implicity) uses the standard

basis: the efficient approach uses the "natural- basis for g, and 92. namely S,.J. Indeed.

(91.92) = (Xl~1..XT-.)

37



subroutine col-colip(§i §.)

variable i. ip

ip - 0

for i = 0,..., 1

ip - ip + count[i] * §a1 [i] * [i]

endfor

return ip

Figure 4: Code for subroutine col1col1ip( 1,. §2)

subroutine colpxcolp.ip( h1 . h2 )

variable i. ip

ip - 0

for i = 0..... I,+il - 1

ip - ip+ count-prod[i] * hi[i] * h2 [i]

endfor

return ip

Figure 5: Code for subroutine colp.colpJp(§1 ,. 2 )

= g1 Ajxlg2

= • 1(0i)2I0lL,,,k,,tI (3)
i=O

since
XTXI = diag( jlx,.ko,to 112 zX,.ki.tII=, 112 .

where (,;. k.i ti) is the ith triple under the total ordering --< described in Section 5.1. The

sum (3) takes time O( ISn. I) and translates easily into the code in Figure 4 for the subroutine

coi-colip.

5.4.2 colp.coipP(h1. h2)

This inner product is similar to the previous one. except that the vectors now come from

span(S,•.+I) and so the appropriate basis to use is S,.1+1. We remind the reader that

count.prod[i] gives the cardinalitv of the ith nonempty indicial set 'w.k.t with 1Il = 1+1 under

the ordering -<+, (see Section 5.3). The code in Figure 5 clearly takes time O(Sn.1+1) =

O(2'n2).
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5.4.3 col-colp-ip(ý. h)

This inner product involves two vectors from different subspaces: g E span(S,11 ). whose
coefficient vector is §. and h E span(,-n.+i ), whose coefficient vector is h. i.e. g = XAj.

h = X1+1h. We remind the reader that n and ,l+l consist of basis vectors associated

with nonempty indicial sets 1,.k.t with IJ.; = I and 1,'l = I + 1 respectively. Thus S,.+1
is a "refinement" of S,.l. and span(S..) C span(Sn.1+s), So the natural basis in which to

express the inner product (g,h) = (X•. X1+1,h) is $n,1+1.

The main task is to represent the vector g E span(Snj) with respect to the basis S•.,+ 4 .

As usual. we let (,z,;kj, tj) with wý;f = I be the jth legitimate triple under the ordering -.

Then by definition.
( . . (4)

J=O

Let (#i. k,..t') with I = 1 + 1 denote the ith legitimate triple under the ordering -.<+,. We

seek the coefficient vector j E RIln.L+1 I satisfying:

Isn~i+1 I-I
g = Z 0( i)zM,.k,..,'. (5)

i=0

Consider the basis vector x,,.k,',t, appearing in (5). Since S5,-+• is a refinement of Sn&1. the
coefficient j( i) is equal to ý(j) where j satisfies:

(,,;,. • = (I ( 2 )o ... o pi (I + 1).k'. f).

In terms of our indexing functions,

j = get-index(pi(2) o.. op[i(l + 1).k'. t').

Having determined the coefficient vector of g with respect to the basis S,.I÷t. we can
compute the inner product of g and h in a manner similar to the previous cases. The code
is shown in Figure 6 and takes time O(S,,.i+) O(2,n 2 ).

5.4.4 col-row-ip(ý,. g2)

This inner product is needed for the error estimates. It involves two vectors from dual sub-
spaces: g, E span(S,.j), whose coefficient vector is ýq. and 92 E span(T1T.). whose coefficient
vector is 92. i.e. g1 = XA1ý. 92 = Rt,,X 1 § 2 . This inner product is more difficult to compute

than any of the previous three because the two subspaces are not related in a trivial way.

i.e. they do not satisfy any containment relations. There are two very different cases to

consider: 21 + 1 > n and 21 + 1 < n.

Case I: 21 + 1 > n
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subroutinc colcolp-ip(•. h)

variable i. ip. I. k. t

ip - 0

for i = 0...., IS. +11 - 1

(p. k. t) - get-triple-prod(i)

ip - ip + count-prod[i] * h[i] *

&[get_index(ji(2) o... o p(l + 1). k, t)]

endfor

return ip

Figure 6: C'ode for subroutine col-colp-ip(ý,h)

We shall show that in the inner product

2n~--

(gl.92) = Z gl(i)g 2(i). (6)
i=0

the products gl(i)g2 (i) (0 < i < 2T' - 1) could all be distinct, and so there is no better way

to compute the inner product other than the sum in (6).

Here is the reason.

Lemma 5.4.1 For 0 < i # j 2' - 1. there exist g, and 92 such that g1(i)g2(i) #

g9(J )92(j),

Proof. Since 21 + 1 > n. a string y of length n is uniquely determined from its i-bit suffix.

its 1-bit prefix. and its 1-bit count. Thus un(i) and an(j) either have different /-bit suffixes.

different i-bit prefixes. or different 1-bit count. So gn(i) and a,(j) cannot both be in the

same suffix-based indicial set L•,kt (with I = 1) and in the same prefix-based indicial set

I,.k.t (with -,'; = 1). Therefore. gl(i) and g1 (j) are not constrained to be equal. and neither

are g2 (i) and g2(j). and there exists g, and g2 such that g1(i)g 2(i) $ gl(j)g2(j). C3

Equivalently, the smallest subspace of R 2
n containing both span(S,.,) and span(T".I) is

R 2 " itself. but the proof is not trivial.

The code in Figure 7 computes the inner product for the case 21 + 1 > 7. in time 0 (2fn).

We remark that we do not expect this case (i.e. l > (n - 1)/2) to occur often as we would

not typicaUv have I that large.

Case II: 21 + 1 < n

We seek a common basis in which to express g, = X1 i~ E span(S,.1 ) and g2 = Ri-,Xý 2 E

span(T,.I). Since the basis vectors in &.1 and Tn are associated with suffix-based and

prefix-based indicial sets respectively, the common basis should have vectors associated

with more general indicial sets involving both suffixes and prefixes.
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subroutine coLIroWuip( 91. 92)
variable 1. ip, ,,a, k. t

ip - 0
for i 0. 2' - 1

- - On(i)

k=K~
t =

ip - ip + g[get-index(,(n-l l ) 1 + " o...o o(n). k. t)] •

M2 [9etJindex(Y(1) o... o k, t)]

endfor

return ip

Figure 7: Code for subroutine col-rowip(§ 1 . §2 ). case I

General indicial sets Formally. for 0 < k < n. 0 < t < n - 1 and Al,1P2 E {0. Il. we

define a general indicial set to be

/22,u t { E { }o. 11' : t = k. 1u) = t. I is a suffix of u and P2 is a prefix of p}.

In analogous fashion to suffix-based indicial sets. we can define general indicial vectors

-21•~ and the general indicial basis V,.,.,. For a complete discussion of general indicial

sets. see Sections 2.6. 2.7 and Appendix A of [Hen9l].

Note that for 0 < k < n. 0 <t <n - 1. ;' E {0. 1}1,

Xwk't = Z 2,2",.k.t

U2E{O,1}'

and

Rnx;.k.t = Z Rnz.w.k,t

AlE{O.1}l

mE 10.1}

"- E Z0'R, 1 1k1t

iuE 10.1}W

So the coefficient of ý:2, ,,k.t in the representation of g9 with respect to the basis F,•. is §,(i)

for the ith triple (?i. ki.ti) = (pt. k. t): and the coefficient of zl,Al.k.t in the representation

of g2 with respect to Vn,.1,1 is §2(j) for the jth triple (.;,.kj.tj) = ((A 2 )R. k.t). Since the

basis Fll is orthogonal. the inner product (91.92) is the summand in (3) adapted to the

basis V,.1..
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Enumeration of general indicial sets To accumulate the sum. we need to enumerate

the basis V,•.i.. or equivalently, the nonempty general indicial sets. This is accomplished

through the many-to-one correspondence below.

Lemma 5.4.2 Let _4 be the collection of nonempty general indicial sets G'2,. 1.k.t (I11 =

1121 = 1) and I be the collection of nonempty 1-bit suffix-based indicial sets in,.*-21+2 ( i. = 1).

The function f I - i given by

f( in-21+2
AL p1 (i1).klqtl

where

k' = k-K(p 2 (1)o...0U2 (l-1))-K(Aj( 2 )o".0p2(l)),

and t' = t - "(Y2) - r(1l).

preserves cardinalities and gives a 221-2-to-one correspondence between g and 1.

Proof. For a string P E GI2 ,. k.t, dropping its leading l - 1 and trailing I - 1 bits transforms
it into a string in Indton eac1+2 sti is uniquely obtained from

•/ZIl (1).k',t "

a string ,y E Gn in such a manner. Thus f preserves cardinalities. Let 1-2112.. E I.JU2 411 ,k.t .lt

By Proposition 4.1.4. the strings in ,,-212 have a common leading bit. which we shall call

p. It is easily verified that

f .l'.t' , = {G.• t: P = p 2(l). 1; = f.-•l1}

k = k' + ,(P2( 1) 0o..-o 0P2(l - 1)) + K(p1(2) o ... 0 P2(1))

and t = t' + r(pt) + r(p 1 )}

and so f gives a 221-2-to-one correspondence.

The code in Figure 8 uses Lemma 5.4.2 to enumerate the nonempty general indicial sets.

It is clear that the code takes time

O(2 2 -2j1S,- 21+2.11) = 0(221-2(2 + (n - 21 + 2)(n - 21 + 1)))

= O(2 21- 2n2 ).

5.4.5 colprowpip(hj.h 2)

This inner product involves hi E span(Sj.1+i) and h2 E span(T,.i+i). whose coefficient

vectors are hi and h2 respectively. It is similar to the previous inner product col-row-ip.

with case I now occuring when 2(l + 1) + 1 > n and case II when 2(l + 1) + 1 < n. For

case II. the general indicial sets involved have suffixes and prefixes of length I + 1. and the

"*generating" 1-bit suffix-based indicial sets are the nonempty v -. 1. The code for

col-row.ip carries over mutatis mutandis.
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subroutinE colrow'ip( g2)

variable i. ip. p, pi. P2. k. t. V. t. cnt. index1, index2

iI . - 0

/* Enumerate general indicial sets associated with ,g-2.+ 2 ,/
for yi E {0.1}1-1

for P2 E {0.1}1

k"- K(P 2 ) + K01)

t'- r(p 2 ) + r(p 2 (l - 1)o0) + r(0 o0I1(1)) + r(g)
indexI - get-index(Oopi1 .k.t)

index2 - get-zindex((p 2 0 0)R. k. t)

ip - ip + §1[index1] * [ 2 [index2]

endfor

endfor
/* Enumerate nonempty In-21+2 k > 0 */

O.k.t

fork = 1.....n-21+1

for t = 1..... mzin(2k. 2(n - 21+ 1 - k) + 1)
c - itn- 21+ 2

cnt - O.kt

if (t is even) p - 0 else p - 1

/* enumerate associated general indicial sets */
for g, E {o. Ij-1

for P2 E 10- 1}1

k' - K(P 2 ) + k + K( i)
t' -- 'r(.2) + r(P2(l - 1) 0 p) + t' + 7(0 0 yj (1)) + 7(#l )

indexi - get-index(O o A1 . k. t)

index2 - get.index((A2 o 1 )R. k. t)

ip - ip + cnt * §I[indexl] * M2[index2]
endfor

endfor

endfor

endfor

/* Enumerate nonempty In-21+ 2 .k < n - 21 + 2*/
similar to code for nonemptv 1n-21+2, k > 0- O,k.t

/* Enumerate general indicial sets associated with 1-21+2 /"1.n-2/4-2.0
similar to code for 002+ 2 ,/

return ip

Figure 8: Code for subroutine col-row-ip(§1 .q 2 ). case II
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5.4.6 coLrowp.ip(ý. h)

As in Section 5.4.5. this inner product is similar to col-row-ip. The vectors g and h belong

to the subspaces span(S,.z) and span(T,.I+i). and their coefficient vectors are j and

respectively. Case I occurs when 1 + (I + 1) + 1 >7 n and case II when I + (I + 1) + 1 < n. For

case II. the general indicial sets involved have suffixes of length I and prefixes of length 1 1.

and the -generating- 1-bit suffix-based indicial sets are the nonempty I7n- 1
+ I . The

code for col-rowdp carries over mutatis mutandis.

5.5 Computation of residual norms

Associated with an approximate eigentriple (-i,.q.p) are the residuals l,•q--,,q and M~p--r,p

for the approximate column eigenvector q E span(S,.i) and the approximate row eigenvector

p E span(T,.I) respectively. Since MAq E span(S,.I+1 ) and M.p E spani(T,.l+1 ). and 7q E

span(Sn.!) and -,p E span(T,.j). we shall therefore consider the more general residual norm

subroutines below, where ý E Rl'.• 1 is a coefficient vector for a vector in either span(s.j I

or span VT,.t). and h E RI3'',+'I is a coefficient vector for a vector in either span(Sn.1j4 i ) or
spani( Tn,.l+a):

(a) col_residual(.h) = XI - X1+1 h 11

- norm of the difference between an approximate column eigenvector and its image

(b) rowresidual(ý. h) = Ijj•nX@ - i,-¥t+1 h [

- norm of the difference between an approximate row eigenvector and its image

We remind the reader that X1 and X 1+1 are the basis matrices for S,. 1 and Sn,,+, respectively.

Since multiplication by orthogonal matrices preserves the spectral norm.

row.-residual(•.h) = 1R,•X 1 - R- 1+

= IIlI(x - xA+ih)l4

= col_residual(ý. h •.

and so we need only to consider the subroutine col-residual.

The subroutine col-residual is very similar to the subroutine col-colp-ip. Both take as

inputs coefficent vectors ý and h for vectors g E span(S,.I) and h E span(T,•.) respectively:

the inner product of g and h is the sum of the product of corresponding entries, while

jig - hil2 is the sum of the squared differences of corresponding entries. The code for

col-colpip carries over with multiplication replaced by taking the square of the difference.

and is shown in Figure 9. The subroutine col-residual therefore has the same order of

running time as that of col-colp-p. namely C(21 n2 ).
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subroutine col-colp-ip(•, h )

variable i. ip. #t. k. t

ip - 0
for i = 0. -1

(p. k. t) - get-tripleprod(i)

ip - ip + count-prodfi] •{h[i] - ý[getindex(y(2) o... op(1 + 1). k. t)]}2

efl-dfor

return ip

Figure 9: Code for subroutine col-residual(ý. h)
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6 Extracting Information from the Projections

The method of minimal representations requires an efficient procedure for calculating the

Perron root and the dominant (positive) eigenvector of PCl. The technical question is

whether there are any algorithms good enough to make each cycle (1 - 1 + 1). in particular
the final one. of tolerable duration. Since there are at most four nonzeros per row and

•.• n22' rows the formation of P~rx requires 4,22l- multiplications and the same
number of additions. It is customary, these days. to ignore the differences between +. -. ,,

/ and to estimate simply flops (floating point operations). Thus x - Prtx needs Sn 2 2-1

flops. With no difficulty we can apply this matrix-vector product m times and so work with
the operator (PC,.t to obtain more rapid convergence.

As the temperature parameter in the Ising model approaches a critical (phase change)
value the two largest eigenvalues of MH approach the same limit and. unfortunately. the

two dominant eigenvectors also converge. In order to be able to take this situation in its

stride, without serious degradation in performance. our algorithm is required to produce. in

all cases. the two largest (positive) eigenvalues and the right and left eigenvectors for both

of them.

The simplest candidiate is the block Power Method with a block size of two. We have
implemented it but found that it lags further and further behind the Lanczos algorithm as I

increases. We will not describe that method here. Some of our readers may not be familiar

with the Lanczos algorithm but we do not wish to digress into a detailed exposition of it

here. See [Wil66]. [GvL89] or [PTL85] for that. What follows is a high level commentary

on our use of the Lanczos algorithm.

Imagine that k steps of the Power Method are taken and each computed vector is saved.
Imagine the best approximation y to the dominant eigenvector that can be made by taking

an appropriate linear combination of all k vectors. In principle the Lanczos algorithm

computes y without saving all k vectors. This last statement is not strictly correct when
the linear operator (or matrix) that generates the power vectors is not self adjoint but it

gives an idea of the strength of the method. In particular one can see that the method is
not strictly iterative because when k equals the order of the matrix, if not before. then y is

the Perron vector.

What the Lanczos process does for a nonsymmetric matrix is the following. It takes two

starting vectors ul and v, which must be supplied by the user. By the end of Step j it has

computed four matrices, each with j columns:

U3 = (u1 . uj).u = 1.i = 1..... j.

= (v... rj).

Tj is tridiagonal (entries given later). and

Q2, = diag(,z1  ..... ,j)
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together with two extra vectors r, and sj. In exact arithmetic, if no breakdown occurs.

- I j -= and =PC [ TL

Moreover. by step j. the vectors u1 ,. . u j-2 and vI . . . . . Vj-2 are no longer needed and are

discarded.

At this point there must be a test to see whether another step is needed. In our

application we compute the two largest eigenvalues of the pair (T.. Qj):

Tjgi = Qjgi~i, i = 1.2.

If 01 and 02 have settled down to the required accuracy (we demand 10 or 12 decimal figures

in agreement with 01 and 02 at the previous value of j) and both are positive then we stop

and compute gi and g2. otherwise the Lanczos process takes another step.

We do not need to describe what goes on in one step. It suffices to note that its overhead

(beyond the matrix-vector product) is 42% of the overhead of the block power method and

1.8 times the overhead of the simple power method.

The matrix fQ7'T, is an oblique projection of PC, and the Lanczos method needs an

auxiliary procedure to compute the wanted eigenvalues of a tridiagonal matrix. Thus all

Lanczos is doing is to provide a tridiagonal approximation to P,'''. We use a modified Newton

iteration that consumes only 2.5%, of the total time required by the Lanczos process. We

say a little more about it later.

Let us suppose that the pth step did pass the test and so 01 and 02 are accepted as the

largest two eigenvalues of P"1 . What remains to be done? First one computes g1 and g2.

the eigenvectors of (T,. Qj). They provide the coefficients for the approximate eigenvectors

of P~n,
3 J

g= uigi(i) and g2 = Zuig2(.

However we have discarded the earlier ui's and vi's and cannot form these sums. So we

run the Lanczos process again, with the same starting vectors, and this time through we

accumulate the two sums before discarding each Lanczos vector. Remember that these

vectors are of dimension n221-1 not 2'. This yields g, and 92. Since PR1 is similar to PC,

we can compute the approximate row eigenvectors at little extra cost from {vi .... . N}.We

need these extra vectors for our error estimates.

There are several aspects that we have glossed over.

1. Occasionally one of the a' values comes too close to zero and we then abort the Lanczos

run as a failure. pick new starting vectors and restart. So far the second run has

always succeeded.

2. Newton's method applied to the characteristic polynomial of our tridiagonal is guaran-

teed to converge from a starting value greater than the dominant eigenvalue but it
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can. in general. be dreadfully slow if the starting value is not quite close to the target.

Since we know the entries of P�, we compute fPlFl,.1 initially and start there. This
is the right choice for small values of j but is too cautious in the later stages when 01

has settled down to two or three decimals.

3. An unpublished result of NN. Kahan which shows that the iteration that doubles the
Newton correction can never jump over the largest stationary point. So we double

the Newton correction until there is a sign reversal in the Newton correction.

4. There is an algorithm for evaluating the Newton correction nicely when the matrix is

tridiagonal [PNO85]. It avoids the rescaling feature that is the curse of the three term

recurrence for the characteristic polynomial and its derivative.

In rlosing 1-t us return to the big picture. Our Lanczos code could be improved in a few
ways should the need arise. Most of the Ising model computation is spent in this section.

We have made a few experiments with m. the power of PQ to be used in Lanczos. The

choice m = 2 is much better than m = 1 but, for reasons we do not fully understand 3 and

4 are better than .5 or 6 in reducing the flop count for the Lanczos run. We cannot give a
simple expression for the cost of computing the largest eigenvalue of PCI together with its

eigenvector because the cost depends quite strongly on the temperature of the Ising model

and we have concentrated our values near the critical one. Our algorithm appears to be
linear in IS,-,.. the order of PF1 . and that is an important factor in the usefulness of our

approach.

We have made a few experiments with the choice of starting vectors ul and v1 in the

Lanczos method. Using eigenvectors from the previous value of I offers some improvement

over random starting vectors.
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7 Error Estimates

An essential ingredient in the method of minimal representation is a reliable estimate of
the accuracy of the approximations derived from the current projections. As explained in

Section 5.3. we can compute the action of the projection on our approximate eigenvector

exactly. in the absence of roundoff errors. and so obtain residual vectors (defined below)

and their norms. We snow below how to use these and related quantities to obtain the

dominant term in a power series expansion for the two eigenvalues we seek.

Here is a standard result from perturbation theory for non- self-adjoint matrices.

Theorem 7.1.1 Let A be a simple eigenvlaue of B and let x and y* be any right and left

eigenvectors for A

Bx = xA. yB = Ay*.

For small enough perturbations f there is an eigenvalue it of B + E such that

p - A = yBx + O(1IE112).y-x

It is customary to define a condition number for A by

1
cond( A) = Y-.

In our application we compute. via the Lanczos process. an approximate triple (r. p-P)
with q and p of norm 1. We also compute residual vectors

r = M q - qlr, s = MAp - pr,.

Our estimate turns on the following result we established in [KPJ82].

Theorem 7.1.2 (7r.q,p') is an exact eigentriple for a matrix M - E where

E = rq" + pS' - pwq'

with

v, := s'q = p'r = p'Mq - p'qr.

Our trick is to consider M = (M - E) + E as a perturbation of M - E. If E is small

enough then, by the theorem just quoted. there is an eigenvalue o of 11 satisfying

i- i = p'Eq/p'q + O(11E112)

but
p*Eq = p'r + s'q - w, = TV

and. by definition.

p'Eq/p'q = p - r,
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where

p := p(q~p') := p'Mq/p'q

is the generalized Rayleigh quotient. Moreover

jlfll < HrIIr' + jp IIp•[ + llPtq'(I
-~~~ lirli -1- +I±+ I1 11 + Isl + • .

All quantities in the expressions given above are computable. NN LUIL 11Efl is small enough.

we can safely use the difference

Ip- Tl

as an error estimate for p as an approximation to the partition function per spin. We

can terminate the sequence of cycles when p and - agree to the desired number of decimal

figures. At that time we will have discovered the minimal representation (within our family)

of M, that gives the required accuracy.

For small values of 1. JEll may not be small enough for the linear term p-w to dominate

the rest of the error.
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8 Numerical results

Here are the results from a preliminary code using the nonsvmmetric Lanczos algoritlim.

For the hardest case. n = :30 and temperature within 37( of critical. it took abotut 20 seconds
on a Sparc station to obtain the partition function to 3 decimal digits. and about .5 mninutes

to obtain 5 decimal digits. In the tables below. GRQ is the generalized Rayleigh quotient

y'M,.r/y'.r. The temperature T = 1.6 is deep within the ferromagnetic region. T = 2.2 is

within 3(7( of the critical temperature.

I approximation GRQ dini time (s)

2 3.5189867614 (2.7 x 10-6) 3.5189822267 (-1.8 x 10-6) 148 0.1

3 3.5189842995 (2.9 x 10-7) 3.5189837782 (-2.4 x 10-7) 2:32 1.3

4 3.5189,839756 (-3.8 x 10-") 3.5189839519 (-6.2 x 10-s) 352 2.0

Table 2: Results for n = 10. B = 0.0001. T = 1.6 (true eigenvalue = 3.5189840135)

I al)proximation GRQ di(n time (s)

2 2.5925207946 (2.3 x 10-4) 2.5922407533 (-5.1 x 10-5) 148 0.8

3 2.5923360346 (4.4 x 10-5) 2.5921803640 (-1.1 x 10-4) 232 1.5

4 2.5922660120 (-2.6 x 10--) 2.5922266644 (-6.6 x 10-5) :352 2.4

Table 3: Results for n = 10. B = 0.0001. T = 2.2 (true eigenvalue = 2.5922922453)

I approximation GRQ approximation - GRQ dim time (s)

2 3.51X9802741 3.51897598 78 4.3 x 10-6 688 5.2

3 3.5189780552 3.5189731775 4.9 x 10-3 1232 8.3

4 3.51899775223 3.3189777525 -2.3 x 10-7 2192 17.0

5 3.5189776100 3-51819775601 5.0 x 10- 3:872 35.7

6 3.5189776241 3.5189776145 9.6 x 10-9 67S4 71.7

7 3-5189776408 3.5189777184 -7.8 x 10-8 11776 132.0

Table 4: Results for n = 20. B = 0.0001. T = 1.6
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I approximation GRQ approximation - GRQ (in tOine (s•
2 2.5875164697 2.587:3011057 2.2 x 10-4 688 (i.N
3 2.5873559732 2.58718.52423 1.7 x 10-4 1232 5.2

4 2.5872924943 2.587224788, 6.,q x 10-5 2192 11.2

5 2.586,A850538 2.5869016769 -1.7 - 10-5 3872 17.3
6 2.372376018 2.5,872809894 -2.3 x 10-1 6784 80.9

7 2.5872475229 2.58729811335 -5.1 x 10-5 11776 76.7

Table 5: Results for n = 20. B = 0.0001. T = 2.2

I approximnation GRQ approximation - (RQ dim time (s)
"2 3.51,897980.36 3.5189277829 5.2 x 10-7 162s 11 .8
:3 3.51S7421095 :3.5187271685 1.3 x 1O-a 3032 16.6

4 3.5189765962 3.35189734194 3.2 x 10`3 5632 50.9

5 3.5189754,869 :3.519630814 1.2 x 10-• 10432 101.5

6 :3.51x9767326 : 3.5189765436 1.9 x 10- 19264 213.3
7 3.5189774542 3.51897735232 -6.9 x 10-s 35456 472.3

Table 6: Results for n = :30. B = 0.0001. T = 1.6

I approximation GRQ approximation - GRQ dim time (s)

2 2.586-877396 2.5864247904 1.6 x 10-4 1628 21.1
3 2.5864495960 2.5863367635 1.1 X 10-4 :3032 17.5

4 2.5,863989389 2.5863409514 5.8 x 10-5 5632 :38.:3
5 2.5863738510 2.5863429058 3.1 x 10-5 10432 64.3

6 2.586363:3205 2.3863620747 1.2 x 10-' 19264 1:39.1
7 2.5863635130 2.5863831549 -2.0 x 10-• 35456 :16.5

Table 7: Results for n = :30. B = 0.0001. T = 2.2
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9 Comments on the Ising model

The model arose in Statistical Mechanics and consists of a regular grid whose vertices are

considered to be 'sites' that can be in exactly one of two possible states. In the original
version [Isi25] each site held an orientable particle that could have its spin p parallel to the

external magnetic field (p = +1) or antiparallel (y = -1) to it. Another application has

p = +1 if the site contains an atom of type A and p = -1 if it contains an atom of type

B. In studying gases u = +1 if a site is occupied by a molecule or p = 0 if it is empty. An
excellent introduction to the Ising model targeted at a general audience is [Cip87].

Early work focussed on ID lattices but the subject really came to life in 1944 when
Onsager [Ons44] derived an exact closed form expression for the partition function (see
below) for an infinite 2D grid with no external magnetic field. This expression exhibited

the desired singularity that signals a critical temperature T, at which a phase transition

occurs. Specifically the residual magnetization Mo0(T) that remains when the external

magnetic field is turned off is positive and decreases steadily to zero as T - T, from below

but simply vanishes for all T > T,.

Exact solutions for nonzero magnetic fields have not been found so far and a number of

researchers have turned to approximations. There are two main approaches.

The combinatorial method uses an expansion of Zv. the partition function for N sites.
that involves for its rth term the total number of subgraphs in an N-node graph with

exactly r edges subject to certain constraints. Considerable effort has gone into counting
these graphs but we shall say no more on this topic. See JKac6S] for further discussion.

The algebraic. or matrix method is based on the creation of a matrix whose spectral

radius (the largest magnitude among the eigenvalues) yields the partition function per spin
[KW41]. This is where our contribution applies and we now turn to the partition function

and the related transfer matrix. The construction that we describe will not yield the transfer

matrix M, that we have used. but instead produces one that is similar 'in fact. it gives

R•I,'R,). It has the advantage. however, of being simpler to understand.

Suppose that the grid contains ,N sites and is subject to an external magnetic field of
strength B. The interaction energy associated with a spin configuration p = (po ..... px-1)

is defined by

E(p) = J pzp3 - g B Epi

neighbors

Here each pi = ±1. J is the coupling constant giving the strength of the spin-spin inter-

actions and g is the magnetic moment of each spin. Usually. neighbors is interpreted as

nearest neighbors but broader definitions are possible.

The "partition function per spin" at temperature T is defined by

:(J.B,T) = [ E :-E(m)/kT]I/N
all

configurations
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for an N-site grid and k is Boltzmann's constant. Several quantities of physical interest

can be expressed in terms of :. By Boltzmann's law ((-E(pIkT)/:" is the probability

of occurence of configuration p at temperature T. The free energy per lattice site at

temperature T is -kT log : ar cI the magnetization per spin is m = kTýj log z [Tho79].

Theorists sometimes normalize g the magnetic moment of each spin to be 1 and for that

reason we have omitted it as an explicit argument for z.

The power of the algebraic approach comes from the introduction of a matrix whose

dominant eigenvalue is exactly z,,(J, B. T) for a particular semi-infinite lattice depending

on n. We indicate briefly how this may be done.
Start with a rectangular grid of sites with n rows and N/n columns. Let ZN(J. B. T)

denote the total partition function (i.e. z, ) for this grid. There are several matrices that
can be associated with this situation. some symmetric, others not. We do not know which

will prove to be most useful but describe the one with the fewest nonzero entries, the

duo-diagonal transfer matrix M,.

In order to remove troublesome boundary conditions the sites are supposed to lie evenly
spaced on a wire wrapped round an inner tube as in a solenoid. There are n sites per turn

and the last site. N - 1. precedes the first site. 0. There are good reasons for counting like

a computer scientist since we can now say that we have a chain of sites of period NY and
the nearest neighbours of site j are simply sites j - 1,j ± n mod N. uniformly for all j,
0o < < N.

The extreme sparsity of M, comes from an apparently wasteful redundancy in expressing

the partition function. For the moment we suppress g. J. B. T and let Z,(j.p) denote the

partial partition function over sites 0. 1.2 .... j + n - 1 except that the last n sites are fixed

at the values P = (f0o..... , -I). Now add just one more site and observe, in detail. how

Z,,(j + 1. F) relates to Z, (j.f). Using the explicit form of E given above

Z.(j + L.P) = E E ... E_ m(F',/1)Z"(j.'U)

where, using the Kronecker delta symbol.

M (O P ' A ) = 4 • 0 4 1 / 4 1 4 3 P•6 • - , 1- e ly'"-• , - (Ju0 + 1 ,, -•

with 3 = gB/kT. - = J/kT. Since Cm and Mm+1 indicate the spin at the same site the

term 6 ,,.m is hardly surprising. This is the redundancy mentioned above. If we wrote

the 2" values Z, (j.M) as a column vector Zj we would have

Z) += Mn Z

and the (P. p) entry of M, is m(P. p). The careful removal of boundary conditions has made

M, independent of j: the recurrence has constant coefficients. After N applications of M,
we have covered the full grid. It follows, after some thought. that the (P. fl) entry of M-'%. is
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exactly the contribution to Z,(N. J. B. T) when a fixed pitch (i.e. turn oil the torus). say

the first, is fixed at the configuration P. So

N= Zd(N. J. B, T)

- trace All.

M, has the nice property of being a nonnegative irreducible matrix and so. by a theorem
of Perron. has a positive eigenvalue A, called the Perron root. that satisfies

[Aji < A,. j > 1.

By standard results in matrix theory and analysis.

z:,(J.B.T) = (traceM)l/A
2n

i=l

- AIasN--oc.

Convergence may be very slow but since the limit is obtained analytically the rate does not

matter.

In order to produce a specific matrix M, one must specify an ordering of the 2' config-

urations p that one pitch (or turn) can assume. The simple mapping

(1 1 -1 1 -1) - (11010) - 24 + 3 + 2' = 26

yields the following duodiagonal form, as illustrated for n = 4:

a b

a-1 b-1

b c

b-b c-1

a b

a-a b-1

b c

b-1 c-1
a-1 b-l

b c

b-1 c-1

a b

a-l b-1

b c

b-1 c-1
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where (with appropriate normalizations)

a - e6 (2-B)/T b= "€-B/T and c = e(-2-B)/T.

We repeat that the above matrix is not the one we have used. but is similar to it.
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A Pý is similar to P?1

This appendix uses notation that is developed in Sections 2. 3. and 4.

T. Goddard [God91) has shown that the row projection matrix P2. is diagonally similar

to the column projection matrix PCn1
PR, = DPC D-1

n21 - 7,1

for some diagonal matrix D which -commutes- with the basis matrix X1 (for any positive

I < n), i.e. there exists a diagonal matrix b such that

DXi = XiD.

In this appendix. we exhibit such a diagonal similarity D. and show that it has the required

property.

As usual. we let n and I be fixed positive integers (I < n). Recall that the column

projection matrix is

PC* "D-•' M 2 X1

and that the row projection matrix is

pR D 1
n.P -- DX (R72,,R 7,)X 1.

where Dx = XTXi and X, is the basis matrix whose columns are vectors in S,1.j. In addition.

the transfer matrix Mn and k,M,ýkn are special cases of duodiagonal matrices:

= ia a )(6 II)(a-i a- b=bb cc b-1 b-1 : c-1 c-1 "

M-= -n[(b b' )( b 1 ):-(b -1 ):(1 )] )]
R,ý,HI•n =IU, a -1 b-1 a a-1 b-1 I b- I c-a I b- I c- •

where

a =exp((2-B)/T), b=exp(-B/T) and c=exp((-2-B)/T).

We shall also identify indices i and j with bit strings of length n.

Theorem A.1.3 M/,-VM77R7 is diagonally similar to Mn. i.e. there exists a nonsingular di-

agonal matrix

D = diag(d(O)..... d(2 - 1))

such that

Rn 11'R, = AMn'b

Proof. Define D = diag(d(O).....d(2 n - 1)) by:

d(i) = exp(2(BK - 7)/T) (7)
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where K is the 1-bit count of i. r is the bit transition count of i. and ^j and -,, are the
values of the leading and trailing bit of i respectively. The (i.j) entry of D6lIID'- is given

by d(i)(M),/d(j). So we need to verify the following (see observations (a) and (b) in

Section 4.2 regarding the nonzero entries of U,):

(a) for even j. 0 < ji< 2"- 2 _ 1:

d(2j)/d(j) = a/a = 1 (8)

d(2j + 1)/d(j) = a-1/b = exp((2B- 2)/T) (9)

(b) for oddj. 0_<j<2` 2 -1:

d(2j)/d(j) = b/a = exp(-2/T) (10)

d(2j + 1)/d(j)= b-1 /b = exp(2B/T) (11)

(c) for even j. 2`2 < j < 2n-1

d(2j)/d(j) = a/b = exp(2/T) (12)

d(2j + 1)/d(j)= a-1 /c = exp(2B/T) (13)

(d) for odd j. 2`2 <j £ 2"-1 - 1:

d(2j)/d(j) = b/b= 1 (14)

d(2j -t- 1)/d(j) = b-1/c = exp((2 + 2B)/T) (1)

(e) for even j. 2'-1 < J < 3- 2"- 2 - 1:

d(2j)/d(j) = b/a-1 = exp((2 - 2B)/T) (16)

d(2j + 1)/d(j) = b-l/b-' = 1 (17)

(f) for odd J. 2'- _< J <S 3 • 2`2 - 1:

d(2j)/d(j) = c/a-' = exp(-2B/T) (18)

d(2j + 1)/d(j)= c-1/b-1 = exp(2/T) (19)

(g) for even j. 3. 2n-2 <j < 2 - 1:

d(2j)/d(j) = b/b-1 = exp(-2B/T) (20)

d(2j + 1)/d(j) = b-/1c- 1 = exp(-2/T) (21)

(h) for odd .3 .2n-2 < j < 2 n - 1:

d(2j)/d(j) = c/b-' = exp((-2 - 2B)/T) (22)

d(2j + 1)/d(j) = c-'/c-' = 1 (23)
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We shall verify (8) and leave the remaining verifications to the reader. Let j be even.
with 0 < j < 2"-2 - 1. and let ,' be the n-bit string corresponding to j. Then

0=o0oo(3)o...o,,;(n- 1)o0, (24)

and the n-bit string corresponding to 2j is

2.. = 0Oo -(3) o-...oo(n - 1)o 0 o0. (2-5

It is clear from (24) and (25) that j and 2j have the same 1-bit count and the same bit
transition count. So from (7), d(j) = d(2j). C

Proposition A.1.4 D -commutes- with X1. i.e. there exists a nonsingular diagonal matrix

D E RIS,'.l~xS.I such that

DX1 = XD.

Thus

.b-I.l = XiD-1

and

x7D = x7D" = (Dx,) = (XID)* = D'XT = DXT.

Proof. It suffices to show that for each column of X1. the nonzero entries in it are multiplied
by the same constant when Xt is premultiplied by b. Since the nonzeros in each column
of Xi occur in indices with common 1-bit count, common bit transition count and common
trailing (because I > 1) and hence leading bits (Proposition 4.1.3). and the entries of b are
characterized by these parameters. the result follows. 0

Corollary A.1.5 The row projection matrixn is similar to the column projection matrix

PT'.
n.1'l

Proof. Using the notation of Theorem A.1.3 and Propostion A.1.4.

n.1= D.'XT(R,,M-R)XI

= DjX7bMDb-1 X,
= DX'DX7MTXID-'

= D(Dj)XM',X,)D-' since Dj. 1D = DD•'
nDPC D-'. 13
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